Spatio-temporal patterns of landslides and erosion in tropical andean catchments

Authors

DOI:

https://doi.org/10.3989/pirineos.2020.175001

Keywords:

Tropical Andes, extreme event, El Niño Southern Oscillation, Land use change, Sediment transport, Soil erosion, Cosmogenic nuclides, Gauging stations

Abstract


Tropical mountain regions are prone to high erosion rates, due to the occurrence of heavy rainfall events and intensely weathered steep terrain. Landslides are a recurrent phenomenon, and often considered as the dominant erosion process on the hillslopes and the main source of sediment. Quantifying the contribution of landslide-derived sediment to the overall sediment load remains a challenge. In this study, we derived catchment-average erosion rates from sediment gauging data and cosmogenic radionuclides (CRN), and examined their reliability and validity for constraining sediment yields in tectonically active regions. Then, we analysed the relationship between catchment-average erosion rates and landslide-derived sediment fluxes. The Pangor catchment, located in the western Andean mountain front, was selected for this study given its exceptionally long time series of hydrometeorological data (1974-2009). When including magnitude-frequency analyses of the sediment yields at the measurement site, the corrected gauging-based sediment yields remain one order of magnitude lower than the CRN-derived erosion rates. The underestimation of catchment-average erosion rates from gauging data points to the difficulty of extrapolating flow frequency and sediment rating data in non-stationary hydrological regimes, and severe undersampling of extreme events. In such conditions, erosion rates derived from cosmogenic radionuclides are a reliable alternative method for the quantification of catchment-average sediment yield. Landslide inventories from remote sensing data (1963-2010) and field measurements of landslide geometries are the input data for the derivation of landslide-derived sediment fluxes. The landslide-related erosion rates of 1688+901−326 and 630+300−108 t.km2.y-1 are similar to the CRN-derived erosion rates, likely indicating that landslides are the main source of sediment in this mountainous catchment.

Downloads

Download data is not yet available.

References

Abbühl, L.M., Norton, K.P., Jansen, J.D., Schlunegger, F., Aldahan, A. & Possnert, G., 2011. Erosion rates and mechanisms of knickzone retreat inferred from 10Be measured across strong climate gradients on the northern and central Andes Western Escarpment. Earth Surface Processes and Landform, 36: 1464-1473. https://doi.org/10.1002/esp.2164

Armijos, E., Laraque, A., Barba, S., Bourrel, L., Ceron, C. Lagane, C., Magat, P., Moquet, S., Pombosa, R., Sondag, F., Vauchel, P., Vera, A. & Guyot, J.L., 2013. Apports de matiéres en suspension et de solides dissous des les bassins andins de l'Equateur. Hydrological Sciences Journal, 58(7): 1478-1494. https://doi.org/10.1080/02626667.2013.826359

Arteaga, K., Tutasi, P. & Jimenez, R., 2006. Climatic variability related to El Nino in Ecuador - a historical background. Advances in Geosciences, 6: 237-241. https://doi.org/10.5194/adgeo-6-237-2006

Balthazar, V., Vanacker, V., Molina, A. & Lambin E.F., 2015. Impacts of forest cover change on ecosystem services in high Andean mountains. Ecological Indicators, 48: 63-75. https://doi.org/10.1016/j.ecolind.2014.07.043

Bell, R., Petschko, H., Röhrs, M. & Dix, A., 2012. Assessment of landslide age, landslide persistence and human impact using airborne laser scanning digital terrain models. Geografiska Annaler, Series A: Physical Geography, 94(1): 135-156. https://doi.org/10.1111/j.1468-0459.2012.00454.x

Borrelli, L., Greco, R. & Gullà, G., 2007. Weathering grade of rock masses as a predisposing factor to slope instabilities: Reconnaissance and control procedures. Geomorphology, 87(3): 158-175. https://doi.org/10.1016/j.geomorph.2006.03.031

Braucher, R., Merchel, S., Borgomano, J. & Bourles, D.L., 2011. Production of cosmogenic radionuclides at great depth : A multi element approach. Earth and Planetary Science Letters, 309(1-2): 1-9. https://doi.org/10.1016/j.epsl.2011.06.036

Brunetti, M.T., Guzzetti, F. & Rossi, M., 2009. Probability distributions of landslide volumes. Nonlinear Processes in Geophysics, 16(2): 179-188. https://doi.org/10.5194/npg-16-179-2009

Che, V.B., Fontijn, K., Ernst, G.G., Kervyn, M., Elburg, M., Van Ranst, E. & Suh, C.E., 2012. Evaluating the degree of weathering in landslide-prone soils in the humid tropics: The case of Limbe, SW Cameroon. Geoderma, 170: 378-389. https://doi.org/10.1016/j.geoderma.2011.10.013

Chen, H. & Lee, C.F., 2003. A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology, 51(4): 269-288. https://doi.org/10.1016/S0169-555X(02)00224-6

Chmeleff, J., von Blanckenburg, F., Kossert, J. & Jakob, D., 2010. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research, Section B, 268(2): 192-199. https://doi.org/10.1016/j.nimb.2009.09.012

Clark, K.E., West, A.J., Hilton, R.G., Asner, G.P., Quesada, C.A., Silman, M.R., Saatchi, S.S., Farfan-Rios, W., Martin, R.E., Horwath, A.B., Halladay, K., New, M. & Malhi, Y., 2016. Storm-triggered landslides in the Peruvian Andes and implications for topography, carbon cycles, and biodiversity. Earth Surface Dynamics, 4(1): 47-70. https://doi.org/10.5194/esurf-4-47-2016

Clarke, B. & Burbank, D.W., 2010. Bedrock fracturing, threshold hillslopes, and limits to the magnitude of bedrock landslides. Earth and Planetary Science Letters, 297(3-4): 577-586. https://doi.org/10.1016/j.epsl.2010.07.011

Crowder, D.W. & Knapp, H.V., 2005. Effective discharge recurrence intervals of Illinois streams. Geomorphology, 64(3-4): 167-184. https://doi.org/10.1016/j.geomorph.2004.06.006

Cruden, D.M. & Varnes, D.J., 1996. Landslides: investigation and mitigation. Transportation Research Board Special Report, 247.

Dosseto, A. & Schaller, M., 2016. The erosion response to Quaternary climate change quantified using uranium isotopes and in situ-produced cosmogenic nuclides. Earth-Science Reviews, 155: 60-81. https://doi.org/10.1016/j.earscirev.2016.01.015

Glade, T., 2003. Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena, 51(3-4): 297-314. https://doi.org/10.1016/S0341-8162(02)00170-4

Gleeson, E.H., Wymann von Dach, S., Flint, C.G, Greenwood, G.B, Price, M.F., Balsiger, J., Nolin, A & Vanacker, V, 2016. Mountains of Our Future Earth: Defining Priorities for Mountain Research-A Synthesis From the 2015 Perth III Conference. Mountain Research and Development, 36(4): 537-548. https://doi.org/10.1659/MRD-JOURNAL-D-16-00094.1

Grau, H.R. & Aide, M., 2008. Globalization and Land-Use Transitions in Latin America. Ecology and Society, 13(2): 16. https://doi.org/10.5751/ES-02559-130216

Guns, M. & Vanacker, V., 2013. Forest cover change trajectories and their impact on landslide occurrence in the tropical Andes. Environmental Earth Sciences, 70(7): 2941-2952. https://doi.org/10.1007/s12665-013-2352-9

Guns, M. & Vanacker, V., 2014. Shifts in landslide frequency-area distribution after forest conversion in the tropical Andes. Anthropocene, 6: 75-85. https://doi.org/10.1016/j.ancene.2014.08.001

Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., Valigi, D., 2009. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3-4): 222-229 https://doi.org/10.1016/j.epsl.2009.01.005

Hansen, M.C., Stehman, S.V & Potapov, P.V., 2010. Quantification of global gross forest cover loss. Proceedings of the National Academy of Sciences, 107(19): 8650-8655. https://doi.org/10.1073/pnas.0912668107 PMid:20421467 PMCid:PMC2889354

Haque, U., da Silva, P.F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., Lee, J., Yamamoto, T., Deellings, D., Wu, J.H., Glas, G.E., 2019. The human cost of global warming: Deadly landslides and their triggers (1995-2014). Science of the Total Environment, 682: 673-684. https://doi.org/10.1016/j.scitotenv.2019.03.415 PMid:31129549

Henry, A., Mabit, L., Jaramillo, R.E., Cartagena, Y. & Lynch, J.P., 2013. Land use effects on erosion and carbon storage ofthe Río Chimbo watershed, Ecuador. Plant and Soil, 367(1-2): 477-491. https://doi.org/10.1007/s11104-012-1478-y

Hong, Y., Adler, R. & Huffman, G., 2007. Use of satellite remote sensing data in the mapping of global landslide susceptibility. Natural Hazards, 43(2): 245-256. https://doi.org/10.1007/s11069-006-9104-z

Korup, O., Densmore, A.L. & Schlunegger, F., 2010. The role of landslides in mountain range evolution. Geomorphology, 120(1-2): 77-90. https://doi.org/10.1016/j.geomorph.2009.09.017

Kubik, P.W. & Christl, M., 2010. 10Be and 26Al measurements at the Zurich 6 MV Tandem AMS facility. Nuclear Instruments and Methods in Physics Research, Section B, 268(7-8): 880-883. https://doi.org/10.1016/j.nimb.2009.10.054

Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters, 104(2-4): 424-439. https://doi.org/10.1016/0012-821X(91)90220-C

Lambin, E.F., Geist, H.J. & Lepers, E., 2004. Dynamics of land use and land cover change in Tropical regions. Annual Review of Environment and Resources, 28(1): 205-241. https://doi.org/10.1146/annurev.energy.28.050302.105459

Lambin, E.F. & Meyfroidt, P., 2010. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy, 27(2): 108-118. https://doi.org/10.1016/j.landusepol.2009.09.003

Larsen, M.C., 1997. Tropical geomorphology and geomorphic work: A study of geomorphic processes and sediment and water budgets in montane humid-tropical forested and developed watersheds, Puerto Rico. Unpublished Ph.D. Thesis, University of Colorado, Geography Department, 341 p.

Larsen, I. J., Montgomery, D.R. & Korup, O., 2010. Landslide erosion controlled by hillslope material. Nature Geosciences, 3(4): 247-251. https://doi.org/10.1038/ngeo776

Latrubesse, E.M. & Restrepo, J.D., 2014. Sediment yield along the Andes: continental budget, regional variations, and comparisons with other basins from orogenic mountain belts. Geomorphology, 216: 225-233. https://doi.org/10.1016/j.geomorph.2014.04.007

Leithold, E.L., Blair, N.E. & Perkey, D.W., 2006. Geomorphologic controls on the age of particulate organic carbon from small mountainous and upland rivers. Global Biogeochemical Cycles, 20(3): GB3022. https://doi.org/10.1029/2005GB002677

Link, O., Cecioni, A., Duyvestein, A. & Vargas, J., 2002. Hydrology of the bio bio river. Zeitschrift fur Geomorphologie, 129: 31-39.

Lupker, M., Blard, P.H., Lavé, J., Lanord, C.F., Leanni, L., Puchol, N., Charreau, J. & Bourles, D., 2012. 10Be-derived Himalayan denudation rates and sediments budgets in the Ganga basin. Earth and Planetary Science Letters, 333-334: 146-156. https://doi.org/10.1016/j.epsl.2012.04.020

Machado, M.J., Botero, B.A., Lopez, J., Frances, F., Diez-Herrero, A. & Benito, G., 2015. Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrology and Earth System Sciences, 19(6): 2561-2576. https://doi.org/10.5194/hess-19-2561-2015

Martin, L.C.P., Blard, P.H., Balco, G., Lavé, J., Delunel, R., Lifton, N. & Laurent, V., 2017. The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmicray exposure ages. Quaternary Geochronology, 38: 25-49. https://doi.org/10.1016/j.quageo.2016.11.006

Milliman, J.D. & Farnsworth, K.L., 2013. River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press, UK.

Molina, A., Govers, G., Poesen, J., Van Hemelryck, H., De Bièvre, B. & Vanacker, V., 2008. Environmental factors controlling spatial variation in sediment yield in a central Andean mountain area. Geomorphology, 98(3-4): 176-186. https://doi.org/10.1016/j.geomorph.2006.12.025

Molina, A., Vanacker, V., Brisson, E., Mora, D. & Balthazar, V., 2015. Multidecadal change in streamflow associated with anthropogenic disturbances in the tropical Andes. Hydrology and Earth System Sciences, 19(10): 4201-4213. https://doi.org/10.5194/hess-19-4201-2015

Molina, A., Vanacker, V., Corre, M.D. & Veldkamp, E., 2019. Patterns in soil chemical weathering related to topographic gradients and vegetation structure in a high Andean tropical ecosystem. Journal of Geophysical Research: Earth Surface, 124(2): 666-685. https://doi.org/10.1029/2018JF004856

Montgomery, D.R., Dietrich, W.E. & Heffner, J.T., 2002. Piezometric response in shallow bedrock at CB1: Implications for runoff generation and landsliding. Water Resources Research, 38(12): 10-18. https://doi.org/10.1029/2002WR001429

Morera, S.B., Condom, T., Crave, A., Steer, P. & Guyot, J.L., 2017. The impact of extreme El Niño events on modern sediment transport along the western Peruvian Andes (1968-2012). Scientific Reports, 7(1): 11947. https://doi.org/10.1038/s41598-017-12220-x PMid:28947821 PMCid:PMC5613030

Muenchow, J., Brenning, A. & Richter, M., 2012. Geomorphic process rates of landslides along a humidity gradient in the tropical Andes. Geomorphology, 139-140: 271-284. https://doi.org/10.1016/j.geomorph.2011.10.029

Niemi, N.A., Oskin, M., Burbank, D.W., Heimsath, A.M. & Gabet, E.J., 2005. Effects of bedrock landslides on cosmogenically determined erosion rates. Earth and Planetary Science Letters, 237(3-4): 480-498. https://doi.org/10.1016/j.epsl.2005.07.009

Norton, K.P. & Vanacker, V., 2009. Effects of terrain smoothing on topographic shielding correction factors for cosmogenic nuclide-derived estimates of basin-averaged denudation rates. Earth Surface Processes and Landforms, 34: 145-154. https://doi.org/10.1002/esp.1700

Norton, K.P., von Blanckenburg, F., DiBiase, R., Schlunegger, F. & Kubik, P.W., 2011. Cosmogenic 10Be-derived denudation rates of the Eastern and Southern European Alps. International Journal of Earth Sciences, 100(5): 1163-1179. https://doi.org/10.1007/s00531-010-0626-y

Pepin, E., Carretier, S., Guyot, J.L. & Escobar, F., 2010. Specific suspended sediment yields of the Andean rivers of Chile and their relationship to climate, slope and vegetation. Hydrological Sciences Journal, 55(7): 1190-1205. https://doi.org/10.1080/02626667.2010.512868

Portenga, E.W. & Bierman, P.R., 2011. Understanding earth's eroding surface with 10Be. GSA Today, 21(8): 4-10. https://doi.org/10.1130/G111A.1

Rosas, M.A., Vanacker, V., Viveen, W., Gutierrez, R. & Huggel, C., 2020. The potential impact of climate variability on siltation of Andean reservoirs. Journal of Hydrology, 581: 124396 https://doi.org/10.1016/j.jhydrol.2019.124396

Schuerch, P., Densmore, A.L., McArdell, B.W. & Molnar, P., 2006. The influence of landsliding on sediment supply and channel change in a steep mountain catchment. Geomorphology, 78(3-4): 222-235. https://doi.org/10.1016/j.geomorph.2006.01.025

Schwab, M., Rieke-Zapp, D., Schneider, H., Liniger, M. & Schlunegger, F., 2008. Landsliding and sediment flux in the Central Swiss Alps: A photogrammetric study of the Schimbrig landslide, Entlebuch. Geomorphology, 97(3-4): 392-406. https://doi.org/10.1016/j.geomorph.2007.08.019

Siame, L.L., Angelier, J., Chen, R.F., Godard, V., Derrieux, F, Bourles, D.L., Braucher, R., Chang, K.J., Chu, H.T., Lee, J.C., 2011. Erosion rates in an active orogen (NE-Taiwan): A confrontation of cosmogenic measurements with river suspended loads. Quaternary Geochronology, 6(2): 246-260. https://doi.org/10.1016/j.quageo.2010.11.003

Sidle, R.C., Ziegler, A.D., Negishi, J.N., Rahim Nik, A., Siew, R. & Turkelboom, F., 2006. Erosion processes in steep terrain - Truths, myths, and uncertainties related to forest management in Southeast Asia. Forest Ecology and Management, 224(1-2): 199-225. https://doi.org/10.1016/j.foreco.2005.12.019

Starke, J., Ehlers, T.A. & Schaller, M., 2017. Tectonic and Climatic Controls on the Spatial Distribution of Denudation Rates in Northern Chile (18°S to 23°S) Determined From Cosmogenic Nuclides. Journal of Geophysical Research: Earth Surface, 122(10): 1949-1971. https://doi.org/10.1002/2016JF004153

Tenorio, G.E., Vanacker, V., Campforts, B., Alvarez, L., Zhiminaicela, S., Vercruysse, K., Molina, A. & Govers, G., 2018. Tracking spatial variation in river load from Andean highlands to inter-Andean valleys. Geomorphology, 308: 175-189. https://doi.org/10.1016/j.geomorph.2018.02.009

Tobar, V. & Wyseure, G., 2018. Seasonal rainfall patterns classification, relationship to ENSO and rainfall trends in Ecuador. International Journal of Climatology, 38(4): 1808-1819. https://doi.org/10.1002/joc.5297

Tote, C., Govers, G., Van Kerckhoven, S., Filiberto, I., Verstraeten, G. & Eerens, H., 2011. Effect of ENSO events on sediment production in a large coastal basin in northern Peru. Earth Surface Processes and Landforms, 36(13): 1776-1788. https://doi.org/10.1002/esp.2200

Townsend-Small, A., McClain, M.E., Hall, B., Noguera, J.L., Llerena, C.A. & Brandes, J.A., 2008. Suspended sediments and organic matter in mountain headwaters of the Amazon River: Results from a 1-year time series study in the central Peruvian Andes. Geochimica et Cosmochimica Acta, 72(3): 732-740. https://doi.org/10.1016/j.gca.2007.11.020

von Blanckenburg, F., Belshaw, N. & O'Nions, R., 1996. Separation of 9Be and cosmogenic 10Be from environmental materials and SIMS isotope dilution analysis. Chemical Geology, 129: 93-99. https://doi.org/10.1016/0009-2541(95)00157-3

Vanacker, V., Vanderschaeghe, M., Govers, G., Willems, E., Poesen, J., Deckers, J. & De Bievre, B., 2003. Linking hydrological, infinite slope stability and land-use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds. Geomorphology, 52(3-4): 299-315. https://doi.org/10.1016/S0169-555X(02)00263-5

Vanacker, V., Molina, A., Govers, G., Poesen, J. & Deckers, J., 2007a. Spatial variation of suspended sediment concentrations in a tropical Andean river system: The Paute River, southern Ecuador. Geomorphology, 87(1-2): 53-67. https://doi.org/10.1016/j.geomorph.2006.06.042

Vanacker, V., von Blanckenburg, F., Govers, G., Molina, A., Poesen, J., Deckers, J. & Kubik, P.W., 2007b. Restoring dense vegetation can slow mountain erosion to near natural benchmark levels. Geology, 35(4): 303-306. https://doi.org/10.1130/G23109A.1

Vanacker, V., von Blanckenburg, F., Govers, G., Campforts, B., Molina, A., Kubik, P.W., 2015. Transient river response, captured by the channel steepness and it s concavity. Geomorphology, 228: 234-243. https://doi.org/10.1016/j.geomorph.2014.09.013

Vermeesch, P., 2007. CosmoCalc: An Excel add-in for cosmogenic nuclide calculations. Geochemistry, Geophysics, Geosystems, 8: Q08003. https://doi.org/10.1029/2006GC001530

Vicente-Serrano, S.M., Aguilar, E., Martinez, R., Martin-Hernandez, N., Azorin-Molina, C., Sanchez-Lorenzo, A., El Kenawy, A., Tomas-Burguera, M., Moran-Tejeda, E., Lopez-Moreno, J.I., Revuelto, J., Begueria, S., Nieto, J.J., Drumond, A., Gimeno, L. & Nieto, R., 2017. The complex influence of ENSO on droughts in Ecuador. Climate Dynamics, 48(1-2): 405-427. https://doi.org/10.1007/s00382-016-3082-y

Winter, T., Avouac, J.P. & Lavenu, A., 1993. Late Quaternary Kinematics of the Pallatanga Strike-Slip-Fault (Central Ecuador) from Topographic Measurements of Displaced Morphological Features. Geophysical Journal International, 115(3): 905-920. https://doi.org/10.1111/j.1365-246X.1993.tb01500.x

Yanites, B.J., Tucker, G.E. & Anderson, R.S., 2009. Numerical and analytical models of cosmogenic radionuclide dynamics in landslide-dominated drainage basins. Journal of Geophysical Research: Earth Surface, 114(1). https://doi.org/10.1029/2008JF001088

Published

2020-09-02

How to Cite

Vanacker, V., Guns, M., Clapuyt, F., Balthazar, V., Tenorio, G., & Molina, A. (2020). Spatio-temporal patterns of landslides and erosion in tropical andean catchments. Pirineos, 175, e051. https://doi.org/10.3989/pirineos.2020.175001

Issue

Section

Articles