Respuesta de una cuenca de cabecera durante eventos de crecida (Aixola, País Vasco)

Autores/as

  • A. Zabaleta Grupo de Hidrogeología y Medio Ambiente, Departamento de Geodinámica, Universidad del País Vasco- Euskal Herriko Unibertsitatea
  • I. Antigüedad Grupo de Hidrogeología y Medio Ambiente, Departamento de Geodinámica, Universidad del País Vasco- Euskal Herriko Unibertsitatea

DOI:

https://doi.org/10.3989/Pirineos.2010.165012

Palabras clave:

Caudal, concentración de sedimentos en suspensión, conductividad eléctrica, eventos de crecida, bucles de histéresis, cuenca de cabecera

Resumen


La turbidez (T, FNU), el caudal (Q, l/s) y la precipitación (P, mm) se están midiendo en continuo en la estación de aforo situada en la salida de la cuenca de Aixola (Gipuzkoa, 5 km2) desde octubre 2003. Se han utilizado los datos recogidos en los eventos ocurridos entre octubre 2003 y octubre 2005 para establecer la relación turbidez-concentración de sedimentos en suspensión (CSS), y así, estimar las series continuas de CSS. Además, también se ha medido la conductividad eléctrica en muestras tomadas durante las crecidas. Por otro lado, se cuantificaron varios parámetros del evento (P, Q y CSS) y anteriores al mismo (Q y P) para todos los eventos registrados. Se observa un nivel significativo de correlación entre las variables de precipitación, caudal y sedimentos en suspensión. Sin embargo, las condiciones anteriores al evento no se correlacionan bien con los parámetros calculados para el mismo. En el análisis de la relación entre la concentración de sedimentos en suspensión y el caudal durante los eventos se han observado cuatro tipos diferentes de bucles de histéresis relacionados con diferentes condiciones antecedentes al evento y del propio evento. La evolución de la conductividad eléctrica durante los eventos de crecida indica que la cuenca posee una capacidad de regulación considerable.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alexandrov, Y., Laronne, J.B. & Reid, I., 2003. Suspended Sediment Concentration And Its Variation With Water Discharge In A Dryland Ephemeral Channel, Northern Negev, Israel. Journal Of Arid Environments, 53: 73-84. doi:10.1006/jare.2002.1020

Ankers, C., Walling, D.E. & Smith, R.P., 2003. The Influence Of Catchment Characteristics On Suspended Sediment Properties. Hidrobiología, 494: 159-167. doi:10.1023/A:1025458114068

Barturen, M.R. & Ugarte, F.M., 1988. Evaluación De La Carga Detrítica En Suspensión Y Carga En Solución Del Río Oñati (Cuenca Del Río Deba. Gipuzkoa). Munibe, 40: 39-54.

Brasington, J. & Richards, K., 2000. Turbidity And Suspended Sediment Dynamics In Small Catchments In The Nepal Middle Hills. Hydrological Processes, 14: 2559-2574. doi:10.1002/1099-1085(20001015)14:14<2559::AID-HYP114>3.0.CO;2-E

De Pablo, C.T.F., Díaz Pineda, F., Martín De Agar, P. & Ugarte, F.M., 1991. Pérdida De Suelo Y Explotación Forestal En El País Vasco. Bizia, 4: 35-38.

Edeso, J.M., 1997. Pérdidas De Suelo En Explotaciones Forestales De La Vertiente Cantábrica Del País Vasco. En: Desarrollo Rural Y Medio Ambiente: El Futuro Del Sector Agrario. Ii Jornadas De Urdaibai Sobre Desarrollo Sostenible, 63-80.

Fao, Unesco & Isric, 1991. Mapa Mundial De Suelos, Leyenda Revisada. Informe Sobre El Recurso Mundial Del Suelo 60., Trad. Por Carballas, Macías, Díaz, Carballas Y Fernández. Sociedad Española De La Ciencia Del Suelo, Santiago De Compostela, España.

Farnsworth, K.L. & Milliman, J.D., 2003. Effects Of Climatic And Anthropogenic Change On Small Mountainous Rivers: The Salinas River Example. Global And Planetary Change, 39: 53-64. doi:10.1016/S0921-8181(03)00017-1

Gippel, C.J., 1989. The Use Of Turbidimeters In Suspended Sediment Research. Hydrobiologia, 176/177: 465-480. doi:10.1007/BF00026582

Holeman, J.N., 1967. The Sediment Yield Of Major Rivers Of The World. Water Resources Research, 4 (4): 737-747. doi:10.1029/WR004i004p00737

House, W.A., Leach, D., Long, J.L.A., Cranwell, P., Bharwaj, L., Meharg, A., Ryland, G., Orr, D.O. & Wright, J., 1997. Microorganic Compounds In The Humber Rivers. Science Of The Total Environment, 194/195: 357-373. doi:10.1016/S0048-9697(96)05375-2

Jansson, M.B., 2002. Determining Sediment Source Areas In A Tropical River Basin, Costa Rica. Catena, 47: 63-84. doi:10.1016/S0341-8162(01)00173-4

Knighton, D., 1998. Fluvial Forms And Processes: A New Perspective. Ed: Arnold, 386 P, London.

Laignel, B., Dupuis, E., Durand, A., Dupont, J.P. Hauchard, E. & Massei, N., 2006. Erosion Balance In The Watersheds Of The Western Paris Basin By High Frecuency Monitoring Of Discharge And Suspended Sediment In Surface Water. C.R. Geoscience, 338: 556-564. doi:10.1016/j.crte.2006.03.010

Lenzi, M.A. & Marchi, L., 2000. Suspended Sediment Load During Floods In A Small Stream Of The Dolomites (Northeastern Italy). Catena, 39: 267-282. doi:10.1016/S0341-8162(00)00079-5

Lewis, J., 1996. Turbidity-Controlled Suspended Sediment Sampling For Runoff-Event Load Estimation. Water Resources Research, 32(7): 2299-2310. doi:10.1029/96WR00991

Llorens, P., Queralt, I., Plana, F. & Gallart, F., 1997. Studying Solute And Particulate Sediment Transfer In A Small Mediterranean Mountainous Catchment Subject To Land Abandonment. Earth Surface Processes And Landforms, 22: 1027-1035. doi:10.1002/(SICI)1096-9837(199711)22:11<1027::AID-ESP799>3.0.CO;2-1

Maneux, E., Dumas, J., Clement, O., Etcheber, H., Charritton, X., Etchart, J., Veyssy, E. & Rimmelin, P., 1999. Assessment Of Suspended Matter Input Into The Oceans By Small Mountainous Coastal Rivers: The Case Of The Bay Of Biscay. Earth And Planetary Sciences, 329: 413- 420.

Milliman, J.D. & Meade, R.H., 1983. World Wide Delivery Of River Sediment To Oceans. Journal Of Geology, 91: 1-21. doi:10.1086/628741

Milliman, J.D. & Syvitski, J.P.M., 1992. Geomorphic/Tectonic Control Of Sediment Discharge To The Ocean: The Importance Of Small Mountainous Rivers. Journal Of Geology, 100: 525-544. doi:10.1086/629606

Picouet, C., Hingray B. & Olivry, J.C., 2001. Empirical And Conceptual Modelling Of The Suspended Sediment Dynamics In A Large Tropical African River: The Upper Niger River Basin. Journal Of Hydrology, 250: 19-39. doi:10.1016/S0022-1694(01)00407-3

Schumm, S.A., 1977. The Fluvial System. Wiley Interscience, 338 P, New York. Seeger M., Errea M.-P., Beguería S., Arnáez J., Martí C. & García Ruiz J.M., 2004. Catchment Soil Moisture And Rainfall Characteristics As Determinant Factors For Discharge/Suspended Sediment Hysteretic Loops In A Small Headwater Catchment In The Spanish Pyrenees. Journal Of Hydrology, 288: 299-311.

Sichingabula, H.M., 1998. Factors Controlling Variations In Suspended Sediment Concentration For Single-Valued Sediment Rating Curves, Fraser River, British Columbia, Canada. Hydrological Processes, 12: 1869-1894. doi:10.1002/(SICI)1099-1085(19981015)12:12<1869::AID-HYP648>3.0.CO;2-G

Sun, H., Cornish, P.S. & Daniell, T.M., 2001. Turbidity-Based Erosion Estimation In A Catchment In South Australia. Journal Of Hydrology, 253: 227- 238. doi:10.1016/S0022-1694(01)00475-9

Uriarte, A., 1998. Sediment Dynamics On The Inner Continental Shelf Of The Basque Country (N. Spain). Department Of Oceanography. Sciences Faculty. University Of Southampton. Tesis Doctoral. 302 P.

Walling, D.E., Russell, M.A. & Webb, B.W., 2001. Controls On The Nutrient Content Of Suspended Sediment Transported By British Rivers. Science Of The Total Environment, 266: 113-123. doi:10.1016/S0048-9697(00)00746-4

Wass, P.D. & Leeks, J.L., 1999. Suspended Sediment Fluxes In The Humber Catchment, Uk Hydrological Processes, 13: 935-953. doi:10.1002/(SICI)1099-1085(199905)13:7<935::AID-HYP783>3.0.CO;2-L

Williams, G.P., 1989. Sediment Concentration Versus Water Discharge During Single Hydrologic Events In Rivers. Journal Of Hydrology, 111: 89-106. doi:10.1016/0022-1694(89)90254-0

Zabaleta A., 2008. Análisis De La Respuesta Hidrosedimentaria En Pequeñas Cuencas De Gipuzkoa. Tesis Doctoral. Upv-Ehu. Dpto. Geodinámica: 252 Pp., Anexos Y Cd.

Zabaleta A., Martínez M., Uriarte J. & Antigüedad I., 2006. Sediment Source Variability As Origin Of Uncertainties In Sediment Yield Estimation (Aixola Catchment, Basque Country). In: Pfister L., Matgen P., Van Den Bos R. And Hoffman L. (Eds), Uncertainties In The ‘Monitoringconceptualization- Modelling’ Sequence Of Catchment Research. Abstract Book Of The Erb Conference, Luxemburg: 27-28.

Zabaleta A., Martínez M., Uriarte J. & Antigüedad I., 2007. Factors Controlling Suspended Sediment Yield During Runoff Events In Small Headwater Catchments Of The Basque Country. Catena, 71: 179-190. doi:10.1016/j.catena.2006.06.007

Descargas

Publicado

2010-12-30

Cómo citar

Zabaleta, A., & Antigüedad, I. (2010). Respuesta de una cuenca de cabecera durante eventos de crecida (Aixola, País Vasco). Pirineos, 165, 237–258. https://doi.org/10.3989/Pirineos.2010.165012

Número

Sección

Artículos