Impacto de los incendios forestales en la regulación de las inundaciones y la depuración del agua

Autores/as

DOI:

https://doi.org/10.3989/pirineos.2023.178006

Palabras clave:

Incendios forestales, regulación de inundaciones, depuración de aguas, severidad, restauración

Resumen


Los incendios forestales son un fenómeno global con repercusiones positivas y negativas en los ecosistemas. Estos son un elemento natural de los ecosistemas que dio forma a diversos biomas. Sin embargo, durante algún tiempo, pueden perturbar los ecosistemas, reduciendo su capacidad para suministrar diversos servicios. El objetivo de este artículo es resumir los impactos de los incendios forestales en la regulación de las inundaciones y la depuración del agua y discutir el uso de algunas medidas de restauración para mitigar los impactos de los incendios forestales. Los incendios forestales, especialmente en el periodo inmediatamente posterior al evento, reducen la capacidad del ecosistema para regular las inundaciones y depurar el agua debido a la eliminación de vegetación y cenizas que pueden degradar la calidad de ese agua. La magnitud de los impactos depende esencialmente de la severidad del incendio forestal y de la intensidad de las precipitaciones posteriores al mismo. Deben aplicarse medidas de restauración, especialmente después de incendios forestales de gran severidad y si la recurrencia es elevada. En el contexto del cambio climático, se espera que el intervalo entre incendios sea más corto y que la severidad sea mayor. Por lo tanto, las medidas de restauración pueden ser más necesarias.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alexandra, J. & Finlayson, M., 2020. Floods after bushfires: rapid responses for reducing impacts of sediment, ash, and nutrient slugs. Australasian Journal of Water Resources, 24: 9-11. https://doi.org/10.1080/13241583.2020.1717694

Barros, T.L., Bracewell, S.A., Mayer-Pinto, M., Dafforn, K.A., Simpson, S.L., Farrell, M. & Johnston, E.L., 2022. Wildfires cause rapid changes to estuarine benthic habitat. Environmental Pollution, 308: 119571. https://doi.org/10.1016/j.envpol.2022.119571 PMid:35661807

Bento-Gonçalves, A. & Vieira, A., 2020. Wildfires in the wildland-urban interface: Key concepts and evaluation methodologies. Science of The Total Environment, 707: 135592. https://doi.org/10.1016/j.scitotenv.2019.135592 PMid:31767309

Blandon, K.D., Emelko, M.B., Silins, U. & Stone, M., 2014. Wildfire and the Future of Water Supply. Environmental Science and Technology, 48: 8936-8943. https://doi.org/10.1021/es500130g PMid:25007310

Brogan, D.J., Nelson, P.A. & MacDonald, L.H., 2019. Spatial and temporal patterns of sediment storage and erosion following a wildfire and extreme flood. Earth Surface Dynamics, 7: 563-590. https://doi.org/10.5194/esurf-7-563-2019

Chiang, F., Mazdiyasni, O. & Agha-Kouchak, A., 2021. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nature Communications, 12: 2754. https://doi.org/10.1038/s41467-021-22314-w PMid:33980822 PMCid:PMC8115225

Cole, R.P., Blandon, K.D., Wagenbrenner, J.W. & Coe, D.R., 2020. Hillslope sediment production after wildfire and post-fire forest management in northern California. Hydrological Processes, 34: 5242-5259. https://doi.org/10.1002/hyp.13932

Coscarelli, R., Aguilar, E., Petrucci, O., Vicente-Serrano, S.M. & Zimbo, F., 2021. The Potential Role of Climate Indices to Explain Floods, Mass-Movement Events and Wildfires in Southern Italy. Climate, 9: 156. https://doi.org/10.3390/cli9110156

Davies, K.W., Wollstein, K., Dragt, B. & O'Connor, C., 2022. Grazing management to reduce wildfire risk in invasive annual grass prone sagebrush communities. Rangelands, 44: 194-199. https://doi.org/10.1016/j.rala.2022.02.001

Dahm, C.N., Candelaria-Ley, R.I., Reale, C.S., Reale, J.K. & Van Horn, D.J., 2015. Extreme water quality degradation following a catastrophic forest fire. Freshwater Biology, 60: 2584-2599. https://doi.org/10.1111/fwb.12548

Doerr, S.H., Shakesby, R.A., Blake, W.H., Chafer, C.J., Humphreys, G.S. & Wallbrink, P.J., 2006. Effects of Differing Wildfire Severities on Soil Wettability and Implications for Hydrological Response. Journal of Hydrology, 319: 295-311. https://doi.org/10.1016/j.jhydrol.2005.06.038

Dove, N.C., Safford, H.D., Bohlman, G.N., Estes, B.L. & Hart, S.C., 2020. High-severity wildfire leads to multi-decadal impacts on soil biogeochemistry in mixed-conifer forests. Ecological Applications, 30: e02072. https://doi.org/10.1002/eap.2072 PMid:31925848

Ebel, B.A. & Moody, J.A., 2020. Parameter estimation for multiple post-wildfire hydrologic models. Hydrological Processes, 34: 4049-4066. https://doi.org/10.1002/hyp.13865

Elia, M., Giannico, V., Spano, G., Lafortezza, R. & Sanesi, G., 2020. Likelihood and frequency of recurrent fire ignitions in highly urbanized Mediterranean landscapes. International Journal of Wildland Fire, 29: 120-131. https://doi.org/10.1071/WF19070

Emelko, M.B., Stone, M., Silins, D., Allin, D., Collins, A.L., Williams, C.S.H., Martens, A.M. & Bladon, K.D., 2016. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Global Change Biology, 22: 1168-1184. https://doi.org/10.1111/gcb.13073 PMid:26313547

Emerton, C.A., Cooke, C.A., Hustins, S., Silins, U., Emelko, M., Lewis, T., Kruk, M.K., Taube, N., Zhu, D., Jackson, B., Stone, M., Kerr, J.G. & Orwin, J.F., 2020. Severe western Canadian wildfire affects water quality even at large basin scales. Water Research, 183: 116071. https://doi.org/10.1016/j.watres.2020.116071 PMid:32717650

Etchells, H., O'Donnell, E.J., Lachlan McCaw, W. & Grierson, P.F., 2020. Fire severity impacts on tree mortality and post-fire recruitment in tall eucalypt forests of southwest Australia. Forest Ecology and Management, 459: 117850. https://doi.org/10.1016/j.foreco.2019.117850

Fernandez, C., Fonturbel, T. & Vega, J.A., 2021. Cumulative effects of salvage logging and slash removal on erosion, soil functioning indicators and vegetation in a severely burned area in NW Spain. Geoderma, 393: 115004. https://doi.org/10.1016/j.geoderma.2021.115004

Fernandez-Marcos, M.L., 2022. Potentially Toxic Substances and Associated Risks in Soils Affected by Wildfires: A Review. Toxics, 10: 31. https://doi.org/10.3390/toxics10010031 PMid:35051073 PMCid:PMC8778774

Figueiredo, R., Pauperio, E. & Romao, X., 2021. Understanding the Impacts of the October 2017 Portugal Wildfires on Cultural Heritage. Heritage, 4: 2580-2598. https://doi.org/10.3390/heritage4040146

Filis, C., Spyrou, N. I., Diakakis, M., Kotroni, V., Lagouvardos, K., Papagiannaki, K. & Lekkas, E., 2020. Post-wildfire flash flooding in small mountainous catchments: post-fire effects and characteristics of the November 2019 flash flood in Kineta, Greece. EGU General Assembly 2020, Vienna. https://doi.org/10.5194/egusphere-egu2020-5501

Francos, M., Pereira, P., Alcañiz, M., Mataix-Solera, J. & Úbeda, X., 2016. Impact of an intense rainfall event on soil properties following a wildfire in a Mediterranean environment (North-East Spain). Science of the Total Environment, 572: 1353-1362. https://doi.org/10.1016/j.scitotenv.2016.01.145 PMid:26848016

Francos, M., Ubeda, X. & Pereira, P., 2019. Impact of torrential rainfall and salvage logging on post-wildfire soil properties in NE Iberian Peninsula. Catena, 177: 210-218. https://doi.org/10.1016/j.catena.2019.02.014

Gomez-Isaza, D.F., Cramp, R.L. & Franklin, C.E., 2022. Fire and rain: A systematic review of the impacts of wildfire and associated runoff on aquatic fauna. Global Change Biology, 28: 2578-2595. https://doi.org/10.1111/gcb.16088 PMid:35038772

Gonzalez-Mathiesen, C., Ruane, S. & March, A., 2021. Integrating wildfire risk management and spatial planning - A historical review of two Australian planning systems. International Journal of Disaster Risk Reduction, 53: 101984. https://doi.org/10.1016/j.ijdrr.2020.101984

Halofsky, J.E., Peterson, D.L. & Harvey, B.J., 2020. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology, 16: 1-26. https://doi.org/10.1186/s42408-019-0062-8

Henin, R., Ramos, A.M., Pinto, J.G. & Liberato, M.L., 2021. A ranking of concurrent precipitation and wind events for the Iberian Peninsula. International Journal of Climatology, 41: 1421-1437. https://doi.org/10.1002/joc.6829

Hohner, A.K., Rhoades, C.C., Wilkerson, P. & Rosario-Ortiz, F.L., 2019. Wildfires Alter Forest Watersheds and Threaten Drinking Water Quality. Accounts of Chemical Research, 52: 1234-1244. https://doi.org/10.1021/acs.accounts.8b00670 PMid:31059225

Holz, A., Kitzberger, T., Paritsis, J. & Veblen, T.T., 2012. Ecological and climatic controls of modern wildfire activity patterns across southwestern South America. Ecosphere, 3: 1-25. https://doi.org/10.1890/ES12-00234.1

Jacobs, L., Maes, J., Mertens, K., Sekajugo, J., Thiery, W., van Lipzig, N., Poesen, J., Kervyn, M. & Dewitte, O., 2016. Reconstruction of a flash flood event through a multi-hazard approach: focus on the Rwenzori Mountains, Uganda. Natural Hazards, 84: 851-876. https://doi.org/10.1007/s11069-016-2458-y

Khorchani, M., Nadal-Romero, E., Lasanta, T. & Tague, C., 2021. Effects of vegetation succession and shrub clearing after land abandonment on the hydrological dynamics in the Central Spanish Pyrenees. Catena, 204: 105374. https://doi.org/10.1016/j.catena.2021.105374

Liu, T., McGuire, L.A., Oakley, N. & Cannon, F., 2022. Temporal changes in rainfall intensity-duration thresholds for post-wildfire flash floods in southern California. Natural Hazards System Sciences Journal, 22: 361-376. https://doi.org/10.5194/nhess-22-361-2022

Mansilha, C., Duarte, C.G., Melo, A., Ribeiro, J., Flores, D. & Espinha Marques, J., 2019. Impact of wildfire on water quality in Caramulo Mountain ridge (Central Portugal). Sustainable Water Resources Management, 5: 319-331. https://doi.org/10.1007/s40899-017-0171-y

Mantero, G., Morresi, D., Marzano, R., Motta, R., Mladenoff. D.J. & Garbarino, M., 2020. The influence of land abandonment on forest disturbance regimes: a global review. Landscape Ecology, 35: 2723-2744. https://doi.org/10.1007/s10980-020-01147-w

Meneses, B.M., Reis, E., Reis, R. & Vale, M.J., 2019. Post-wildfires effects on physicochemical properties of surface water: the case study of Zêzere watershed (Portugal). Ribagua, 6: 34-48. https://doi.org/10.1080/23863781.2019.1596771

Moghli, A., Santana, V., Baeza, M.J., Pastor, E. & Soliveres, S., 2022. Fire Recurrence and Time Since Last Fire Interact to Determine the Supply of Multiple Ecosystem Services by Mediterranean Forests. Ecosystems, 25: 1358-1370. https://doi.org/10.1007/s10021-021-00720-x

Moody, J.A. & Ebel, B.A., 2012. Hyper-dry conditions provide new insights into the cause of extreme floods after wildfire. Catena, 93: 58-63. https://doi.org/10.1016/j.catena.2012.01.006

Mueller, J.M., Lima, R.E., Springer, A.E. & Schiefer, E., 2018. Using Matching Methods to Estimate Impacts of Wildfire and Postwildfire Flooding on House Prices. Water Resources Research, 54: 6189-6201. https://doi.org/10.1029/2017WR022195

Muñoz-Rojas, M., Machado de Lima, N., Chamizo, S. & Bowker, M.A. 2021. Restoring post-fire ecosystems with biocrusts: Living, photosynthetic soil surfaces. Current Opinion in Environmental Science & Health, 23: 100273. https://doi.org/10.1016/j.coesh.2021.100273

Murphy, S.F., McCleskey, R.B., Martin, D.A., Holloway, J.M. & Writer, J.H., 2020. Wildfire-driven changes in hydrology mobilize arsenic and metals from legacy mine waste. Science of the Total Environment, 743: 140635. https://doi.org/10.1016/j.scitotenv.2020.140635 PMid:32663689

Nyman, P., Sheridan, G.J., Smith, H., Lane, P.J.N., 2011. Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia. Geomorphology, 125: 383-401. https://doi.org/10.1016/j.geomorph.2010.10.016

Ortega-Becerril, J.A., Garrote, J., Vicente, Á. & Marqués, M.J., 2022. Wildfire-Induced Changes in Flood Risk in Recreational Canyoning Areas: Lessons from the 2017 Jerte Canyons Disaster. Water, 14: 2345. https://doi.org/10.3390/w14152345

Pelletier, N., Chetelat, J., Sinon, S. & Vermaire, J.C., 2022. Wildfires trigger multi-decadal increases in sedimentation rate and metal loading to subarctic montane lakes. Science of the Total Environment, 824: 153738. https://doi.org/10.1016/j.scitotenv.2022.153738 PMid:35151741

Pereira, P., Francos, M., Brevik, E.C., Ubeda, X. & Bogunovic, I., 2018a. Post-fire soil management. Current Opinion in Environmental Science & Health, 5: 26-32. https://doi.org/10.1016/j.coesh.2018.04.002

Pereira, P., Brevik, E.C., Bogunovic, I. & Estebaranz, F., 2018b. Ash and soils. A close relationship in fire affected areas. In: P. Pereira, J. Mataix-Solera, X. Ubeda, G. Rein & A. Cerda (eds), Fire impacts on soils. State of the art and methods used. Sydney, Australia: CSIRO. 39-67 pp.

Pereira, P., Bogunovic, I., Zhao, W. & Barcelo, D., 2021. Short-term effect of wildfires and prescribed fires on ecosystem services. Current Opinion in Environmental Science & Health, 22: 100266. https://doi.org/10.1016/j.coesh.2021.100266

Pereira, P., Inacio, M., Kalinauskas, M., Bogdzevič, K., Bogunovic, I. & Zhao, W., 2022. Land-use changes and Ecosystem Services. In: P. Pereira, E. Gomes, J. Rocha (eds), Mapping and forecast land use/cover changes. The Present and Future of Planning. Amsterdam, Netherlands: Elsevier. 1-27 pp. https://doi.org/10.1016/B978-0-323-90947-1.00007-7

Peshoria, S., Nandini, D., Tanwar, R.K. & Narang, R., 2020. Short-chain and long-chain fluorosurfactants in firefighting foam: a review. Environmental Chemistry Letters, 18: 1277-1300. https://doi.org/10.1007/s10311-020-01015-8

Piccinelli, S., Brusa, G. & Cannone, N., 2020. Climate warming accelerates forest encroachment triggered by land use change: A case study in the Italian Prealps (Triangolo Lariano, Italy). Catena, 195: 104870. https://doi.org/10.1016/j.catena.2020.104870

Proctor, C.R., Lee, J., Yu, D., Shah, A.D. & Whelton, A.J., 2020. Wildfire caused widespread drinking water distribution network contamination. AWWA Water Science, 2: e1183. https://doi.org/10.1002/aws2.1183

Robinne, F.N., Hallema, D.W., Bladon, K.D. & Buttle, J.M., 2020. Wildfire impacts on hydrologic ecosystem services in North American high-latitude forests: A scoping review. Journal of Hydrology, 581: 124360. https://doi.org/10.1016/j.jhydrol.2019.124360

Robinne, F.N., Hallema, D.W., Bladon, K.D., Flannigan, M.D., Boisramé, G., Bréthaut, C.M., Doerr, S., Di Baldassarre, G., Gallagher, L.A., Hohner, A.K., Khan, S.J., Kinoshita, A.M., Mordecai, R., Nunes, J.P., Nyman, P., Santín, S., Sheridan, G., Stoof, C.R., Thompson, M.P., Waddington, J.M., & Wei, Y., 2021. Scientists' warning on extreme wildfire risks to water supply. Hydrological processes, 35: e14086. https://doi.org/10.1002/hyp.14086 PMid:34248273 PMCid:PMC8251805

Roye, D., Lorenzo, N. & Martin-Vide, J., 2018. Spatial-temporal patterns of cloud-to-ground lightning over the northwest Iberian Peninsula during the period 2010-2015. Natural Hazards, 92: 857-884. https://doi.org/10.1007/s11069-018-3228-9

Rust, A.J., Hogue, T.S., Saxe, S. & McGray, J., 2018. Post-fire water-quality response in the western United States. International Journal of Wildland Fire, 27: 203-216. https://doi.org/10.1071/WF17115

Rust, A.J., Randell, J., Todd, A.S. & Hogue, T.S., 2019. Wildfire impacts on water quality, macroinvertebrate, and trout populations in the Upper Rio Grande. Forest Ecology and Management, 453: 117636. https://doi.org/10.1016/j.foreco.2019.117636

Santana, V.M., Baeza, M.J., Valdecantos, A. & Vallejo, V.R., 2018. Redirecting fire-prone Mediterranean ecosystems toward more resilient and less flammable communities. Journal of Environmental Management, 215: 108-115. https://doi.org/10.1016/j.jenvman.2018.03.063 PMid:29567550

Shakesby, R.A., 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews, 105: 71-100. https://doi.org/10.1016/j.earscirev.2011.01.001

Sil, A., Fernandes, P.M., Rodrigues, A.P., Alonso, J.M., Honrado, J.P., Pereira, A. & Azevedo, J.C., 2019. Farmland abandonment decreases the fire regulation capacity and the fire protection ecosystem service in mountain landscapes. Ecosystem Services, 36: 100908. https://doi.org/10.1016/j.ecoser.2019.100908

Silva, V., Pereira, J.L., Campos, I., Keizer, J.J., Gonçalves, F. & Abrantes, N., 2015. Toxicity assessment of aqueous extracts of ash from forest fires. Catena, 135: 401-408. https://doi.org/10.1016/j.catena.2014.06.021

Smith-Ramirez, C., Castillo-Mandujano, J., Becerra, P., Sandoval, N., Allende, R. & Fuentes, R., 2021. Recovery of Chilean Mediterranean vegetation after different frequencies of fires. Forest Ecology and Management, 485: 118922. https://doi.org/10.1016/j.foreco.2021.118922

Taboada, A., Garcia-Llamas, P., Fernández-Guisuraga, J.M. & Calvo, L., 2021. Wildfires impact on ecosystem service delivery in fire-prone maritime pine-dominated forests. Ecosystem Services, 50: 101334. https://doi.org/10.1016/j.ecoser.2021.101334

Thompson, V.F., Marshall, D.L., Reale, J.K. & Dahm, C.N., 2019. The effects of a catastrophic forest fire on the biomass of submerged stream macrophytes. Aquatic Botany, 152: 36-42. https://doi.org/10.1016/j.aquabot.2018.09.001

Touma, D., Stevenson, S., Swain, D.L., Singh, D., Kalashnikov, D. & Huang, X., 2022. Climate change increases risk of extreme rainfall following wildfire in the western United States. Science Advances, 8: eabm0320. https://doi.org/10.1126/sciadv.abm0320 PMid:35363525

Turco, M., von Hardenberg, J., AghaKouchak, A., Llasat, M.C., Provenzale, A. & Trigo, R.M., 2017. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Scientific Reports, 7: 81. https://doi.org/10.1038/s41598-017-00116-9 PMid:28250442 PMCid:PMC5427854

Vieira, N.K.M., Clements, W.H., Guevara, L.S. & Jacobs, B.F., 2004. Resistance and resilience of stream insect communities to repeated hydrologic disturbances after a wildfire. Freshwater Biology, 49: 1243-1259. https://doi.org/10.1111/j.1365-2427.2004.01261.x

Yu, M., Bishop, T. & Van Ogtrop, F.F., 2019. Assessment of the Decadal Impact of Wildfire on Water Quality in Forested Catchments. Water, 11: 533. https://doi.org/10.3390/w11030533

Zazali, H.H., Towers, I.N. & Sharples, J.J., 2019. A critical review of fuel accumulation models used in Australian fire management. International Journal of Wildland Fire, 30: 42-56. https://doi.org/10.1071/WF20031

Publicado

2023-08-18

Cómo citar

Francos, M., Bogunovic, I., & Pereira, P. (2023). Impacto de los incendios forestales en la regulación de las inundaciones y la depuración del agua. Pirineos, 178, not.004. https://doi.org/10.3989/pirineos.2023.178006

Número

Sección

NO_SECCION_CON_RESUMEN

Artículos más leídos del mismo autor/a