Distribución espacio-temporal de los deslizamientos y erosión hídrica en una cuenca Andina tropical

Autores/as

DOI:

https://doi.org/10.3989/pirineos.2020.175001

Palabras clave:

Andes tropicales, Eventos extremos, El Niño Southern Oscillation, Cambio del uso de la tierra, Transporte de sedimentos, Erosión de suelo, Nucleidos cosmogénicos, Estaciones de aforo

Resumen


Las cadenas montañosas en las regiones tropicales se caracterizan por las altas tasas de erosión debido a los eventos de lluvia intensa, terrenos escarpados y al alto grado de meteorización del material parental. Los deslizamientos son fenómenos recurrentes, y son considerados como los procesos más importantes de erosión en las zonas montañosas y las principales fuentes de sedimentos en el sistema fluvial. Con el objetivo de cuantificar la contribución de sedimentos provenientes de los deslizamientos al sistema fluvial, se realizó un estudio de caso en la Cuenca del Río Pangór, Ecuador. En este estudio, se cuantificó las tasas de erosión a escala de cuenca por medio de información derivada de estaciones de aforo de caudales e inventarios de isótopos cosmogénicos en sedimentos fluviales. Después, se evaluó la fiabilidad y validez de la información obtenida con el objetivo de cuantificar la carga de sedimento transportado por el río en regiones montañosas. Finalmente, se analizó la fracción de la carga total de sedimento proveniente de deslizamientos en las laderas. La cuenca del Río Pangór fue seleccionada por su extensa serie de tiempo de datos hidrometeorológicos (1974-2009). La carga de sedimento en el Río Pangór fue estimada por medio de un análisis de magnitudfrecuencia de la información recolectada en una estación hidrométrica y datos de concentración de sedimentos en suspensión. Los resultados muestran un valor de un orden de magnitud menor que la tasa de erosión calculada en función de los inventarios de isótopos cosmogénicos. Esta diferencia se explica por (i) la dificultad de extrapolar la información sobre la frecuencia temporal de los caudales y la carga de sedimento en regímenes hidrológicos no estacionarios, y (ii) el submuestreo de eventos extremos. Bajo estas condiciones, la cuantificación de las tasas de erosión derivadas de los isótopos cosmogénicos proporcionan una metodología alternativa para la cuantificación de la carga total de sedimentos en el sistema fluvial. Un inventario multitemporal (1963-2010) de deslizamientos fue desarrollado a partir de imágenes de satélite y fotografías aéreas. Mediante trabajo de campo se generó información sobre la geometría de los deslizamientos para la cuantificación de volúmenes de sedimento producido por los deslizamientos. En la cuenca del Río Pangór las altas tasas de erosión producida por los deslizamientos varían entre 1688+901−326 y 630+300−108 t.km2.y-1, valores que son similares a las tasas de erosión derivadas de isotopos cosmogénicos. Los resultados indican que los deslizamientos son las principales fuentes de sedimento en esta cuenca montañosa.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abbühl, L.M., Norton, K.P., Jansen, J.D., Schlunegger, F., Aldahan, A. & Possnert, G., 2011. Erosion rates and mechanisms of knickzone retreat inferred from 10Be measured across strong climate gradients on the northern and central Andes Western Escarpment. Earth Surface Processes and Landform, 36: 1464-1473. https://doi.org/10.1002/esp.2164

Armijos, E., Laraque, A., Barba, S., Bourrel, L., Ceron, C. Lagane, C., Magat, P., Moquet, S., Pombosa, R., Sondag, F., Vauchel, P., Vera, A. & Guyot, J.L., 2013. Apports de matiéres en suspension et de solides dissous des les bassins andins de l'Equateur. Hydrological Sciences Journal, 58(7): 1478-1494. https://doi.org/10.1080/02626667.2013.826359

Arteaga, K., Tutasi, P. & Jimenez, R., 2006. Climatic variability related to El Nino in Ecuador - a historical background. Advances in Geosciences, 6: 237-241. https://doi.org/10.5194/adgeo-6-237-2006

Balthazar, V., Vanacker, V., Molina, A. & Lambin E.F., 2015. Impacts of forest cover change on ecosystem services in high Andean mountains. Ecological Indicators, 48: 63-75. https://doi.org/10.1016/j.ecolind.2014.07.043

Bell, R., Petschko, H., Röhrs, M. & Dix, A., 2012. Assessment of landslide age, landslide persistence and human impact using airborne laser scanning digital terrain models. Geografiska Annaler, Series A: Physical Geography, 94(1): 135-156. https://doi.org/10.1111/j.1468-0459.2012.00454.x

Borrelli, L., Greco, R. & Gullà, G., 2007. Weathering grade of rock masses as a predisposing factor to slope instabilities: Reconnaissance and control procedures. Geomorphology, 87(3): 158-175. https://doi.org/10.1016/j.geomorph.2006.03.031

Braucher, R., Merchel, S., Borgomano, J. & Bourles, D.L., 2011. Production of cosmogenic radionuclides at great depth : A multi element approach. Earth and Planetary Science Letters, 309(1-2): 1-9. https://doi.org/10.1016/j.epsl.2011.06.036

Brunetti, M.T., Guzzetti, F. & Rossi, M., 2009. Probability distributions of landslide volumes. Nonlinear Processes in Geophysics, 16(2): 179-188. https://doi.org/10.5194/npg-16-179-2009

Che, V.B., Fontijn, K., Ernst, G.G., Kervyn, M., Elburg, M., Van Ranst, E. & Suh, C.E., 2012. Evaluating the degree of weathering in landslide-prone soils in the humid tropics: The case of Limbe, SW Cameroon. Geoderma, 170: 378-389. https://doi.org/10.1016/j.geoderma.2011.10.013

Chen, H. & Lee, C.F., 2003. A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology, 51(4): 269-288. https://doi.org/10.1016/S0169-555X(02)00224-6

Chmeleff, J., von Blanckenburg, F., Kossert, J. & Jakob, D., 2010. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research, Section B, 268(2): 192-199. https://doi.org/10.1016/j.nimb.2009.09.012

Clark, K.E., West, A.J., Hilton, R.G., Asner, G.P., Quesada, C.A., Silman, M.R., Saatchi, S.S., Farfan-Rios, W., Martin, R.E., Horwath, A.B., Halladay, K., New, M. & Malhi, Y., 2016. Storm-triggered landslides in the Peruvian Andes and implications for topography, carbon cycles, and biodiversity. Earth Surface Dynamics, 4(1): 47-70. https://doi.org/10.5194/esurf-4-47-2016

Clarke, B. & Burbank, D.W., 2010. Bedrock fracturing, threshold hillslopes, and limits to the magnitude of bedrock landslides. Earth and Planetary Science Letters, 297(3-4): 577-586. https://doi.org/10.1016/j.epsl.2010.07.011

Crowder, D.W. & Knapp, H.V., 2005. Effective discharge recurrence intervals of Illinois streams. Geomorphology, 64(3-4): 167-184. https://doi.org/10.1016/j.geomorph.2004.06.006

Cruden, D.M. & Varnes, D.J., 1996. Landslides: investigation and mitigation. Transportation Research Board Special Report, 247.

Dosseto, A. & Schaller, M., 2016. The erosion response to Quaternary climate change quantified using uranium isotopes and in situ-produced cosmogenic nuclides. Earth-Science Reviews, 155: 60-81. https://doi.org/10.1016/j.earscirev.2016.01.015

Glade, T., 2003. Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena, 51(3-4): 297-314. https://doi.org/10.1016/S0341-8162(02)00170-4

Gleeson, E.H., Wymann von Dach, S., Flint, C.G, Greenwood, G.B, Price, M.F., Balsiger, J., Nolin, A & Vanacker, V, 2016. Mountains of Our Future Earth: Defining Priorities for Mountain Research-A Synthesis From the 2015 Perth III Conference. Mountain Research and Development, 36(4): 537-548. https://doi.org/10.1659/MRD-JOURNAL-D-16-00094.1

Grau, H.R. & Aide, M., 2008. Globalization and Land-Use Transitions in Latin America. Ecology and Society, 13(2): 16. https://doi.org/10.5751/ES-02559-130216

Guns, M. & Vanacker, V., 2013. Forest cover change trajectories and their impact on landslide occurrence in the tropical Andes. Environmental Earth Sciences, 70(7): 2941-2952. https://doi.org/10.1007/s12665-013-2352-9

Guns, M. & Vanacker, V., 2014. Shifts in landslide frequency-area distribution after forest conversion in the tropical Andes. Anthropocene, 6: 75-85. https://doi.org/10.1016/j.ancene.2014.08.001

Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., Valigi, D., 2009. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3-4): 222-229 https://doi.org/10.1016/j.epsl.2009.01.005

Hansen, M.C., Stehman, S.V & Potapov, P.V., 2010. Quantification of global gross forest cover loss. Proceedings of the National Academy of Sciences, 107(19): 8650-8655. https://doi.org/10.1073/pnas.0912668107 PMid:20421467 PMCid:PMC2889354

Haque, U., da Silva, P.F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., Lee, J., Yamamoto, T., Deellings, D., Wu, J.H., Glas, G.E., 2019. The human cost of global warming: Deadly landslides and their triggers (1995-2014). Science of the Total Environment, 682: 673-684. https://doi.org/10.1016/j.scitotenv.2019.03.415 PMid:31129549

Henry, A., Mabit, L., Jaramillo, R.E., Cartagena, Y. & Lynch, J.P., 2013. Land use effects on erosion and carbon storage ofthe Río Chimbo watershed, Ecuador. Plant and Soil, 367(1-2): 477-491. https://doi.org/10.1007/s11104-012-1478-y

Hong, Y., Adler, R. & Huffman, G., 2007. Use of satellite remote sensing data in the mapping of global landslide susceptibility. Natural Hazards, 43(2): 245-256. https://doi.org/10.1007/s11069-006-9104-z

Korup, O., Densmore, A.L. & Schlunegger, F., 2010. The role of landslides in mountain range evolution. Geomorphology, 120(1-2): 77-90. https://doi.org/10.1016/j.geomorph.2009.09.017

Kubik, P.W. & Christl, M., 2010. 10Be and 26Al measurements at the Zurich 6 MV Tandem AMS facility. Nuclear Instruments and Methods in Physics Research, Section B, 268(7-8): 880-883. https://doi.org/10.1016/j.nimb.2009.10.054

Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters, 104(2-4): 424-439. https://doi.org/10.1016/0012-821X(91)90220-C

Lambin, E.F., Geist, H.J. & Lepers, E., 2004. Dynamics of land use and land cover change in Tropical regions. Annual Review of Environment and Resources, 28(1): 205-241. https://doi.org/10.1146/annurev.energy.28.050302.105459

Lambin, E.F. & Meyfroidt, P., 2010. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy, 27(2): 108-118. https://doi.org/10.1016/j.landusepol.2009.09.003

Larsen, M.C., 1997. Tropical geomorphology and geomorphic work: A study of geomorphic processes and sediment and water budgets in montane humid-tropical forested and developed watersheds, Puerto Rico. Unpublished Ph.D. Thesis, University of Colorado, Geography Department, 341 p.

Larsen, I. J., Montgomery, D.R. & Korup, O., 2010. Landslide erosion controlled by hillslope material. Nature Geosciences, 3(4): 247-251. https://doi.org/10.1038/ngeo776

Latrubesse, E.M. & Restrepo, J.D., 2014. Sediment yield along the Andes: continental budget, regional variations, and comparisons with other basins from orogenic mountain belts. Geomorphology, 216: 225-233. https://doi.org/10.1016/j.geomorph.2014.04.007

Leithold, E.L., Blair, N.E. & Perkey, D.W., 2006. Geomorphologic controls on the age of particulate organic carbon from small mountainous and upland rivers. Global Biogeochemical Cycles, 20(3): GB3022. https://doi.org/10.1029/2005GB002677

Link, O., Cecioni, A., Duyvestein, A. & Vargas, J., 2002. Hydrology of the bio bio river. Zeitschrift fur Geomorphologie, 129: 31-39.

Lupker, M., Blard, P.H., Lavé, J., Lanord, C.F., Leanni, L., Puchol, N., Charreau, J. & Bourles, D., 2012. 10Be-derived Himalayan denudation rates and sediments budgets in the Ganga basin. Earth and Planetary Science Letters, 333-334: 146-156. https://doi.org/10.1016/j.epsl.2012.04.020

Machado, M.J., Botero, B.A., Lopez, J., Frances, F., Diez-Herrero, A. & Benito, G., 2015. Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrology and Earth System Sciences, 19(6): 2561-2576. https://doi.org/10.5194/hess-19-2561-2015

Martin, L.C.P., Blard, P.H., Balco, G., Lavé, J., Delunel, R., Lifton, N. & Laurent, V., 2017. The CREp program and the ICE-D production rate calibration database: A fully parameterizable and updated online tool to compute cosmicray exposure ages. Quaternary Geochronology, 38: 25-49. https://doi.org/10.1016/j.quageo.2016.11.006

Milliman, J.D. & Farnsworth, K.L., 2013. River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press, UK.

Molina, A., Govers, G., Poesen, J., Van Hemelryck, H., De Bièvre, B. & Vanacker, V., 2008. Environmental factors controlling spatial variation in sediment yield in a central Andean mountain area. Geomorphology, 98(3-4): 176-186. https://doi.org/10.1016/j.geomorph.2006.12.025

Molina, A., Vanacker, V., Brisson, E., Mora, D. & Balthazar, V., 2015. Multidecadal change in streamflow associated with anthropogenic disturbances in the tropical Andes. Hydrology and Earth System Sciences, 19(10): 4201-4213. https://doi.org/10.5194/hess-19-4201-2015

Molina, A., Vanacker, V., Corre, M.D. & Veldkamp, E., 2019. Patterns in soil chemical weathering related to topographic gradients and vegetation structure in a high Andean tropical ecosystem. Journal of Geophysical Research: Earth Surface, 124(2): 666-685. https://doi.org/10.1029/2018JF004856

Montgomery, D.R., Dietrich, W.E. & Heffner, J.T., 2002. Piezometric response in shallow bedrock at CB1: Implications for runoff generation and landsliding. Water Resources Research, 38(12): 10-18. https://doi.org/10.1029/2002WR001429

Morera, S.B., Condom, T., Crave, A., Steer, P. & Guyot, J.L., 2017. The impact of extreme El Niño events on modern sediment transport along the western Peruvian Andes (1968-2012). Scientific Reports, 7(1): 11947. https://doi.org/10.1038/s41598-017-12220-x PMid:28947821 PMCid:PMC5613030

Muenchow, J., Brenning, A. & Richter, M., 2012. Geomorphic process rates of landslides along a humidity gradient in the tropical Andes. Geomorphology, 139-140: 271-284. https://doi.org/10.1016/j.geomorph.2011.10.029

Niemi, N.A., Oskin, M., Burbank, D.W., Heimsath, A.M. & Gabet, E.J., 2005. Effects of bedrock landslides on cosmogenically determined erosion rates. Earth and Planetary Science Letters, 237(3-4): 480-498. https://doi.org/10.1016/j.epsl.2005.07.009

Norton, K.P. & Vanacker, V., 2009. Effects of terrain smoothing on topographic shielding correction factors for cosmogenic nuclide-derived estimates of basin-averaged denudation rates. Earth Surface Processes and Landforms, 34: 145-154. https://doi.org/10.1002/esp.1700

Norton, K.P., von Blanckenburg, F., DiBiase, R., Schlunegger, F. & Kubik, P.W., 2011. Cosmogenic 10Be-derived denudation rates of the Eastern and Southern European Alps. International Journal of Earth Sciences, 100(5): 1163-1179. https://doi.org/10.1007/s00531-010-0626-y

Pepin, E., Carretier, S., Guyot, J.L. & Escobar, F., 2010. Specific suspended sediment yields of the Andean rivers of Chile and their relationship to climate, slope and vegetation. Hydrological Sciences Journal, 55(7): 1190-1205. https://doi.org/10.1080/02626667.2010.512868

Portenga, E.W. & Bierman, P.R., 2011. Understanding earth's eroding surface with 10Be. GSA Today, 21(8): 4-10. https://doi.org/10.1130/G111A.1

Rosas, M.A., Vanacker, V., Viveen, W., Gutierrez, R. & Huggel, C., 2020. The potential impact of climate variability on siltation of Andean reservoirs. Journal of Hydrology, 581: 124396 https://doi.org/10.1016/j.jhydrol.2019.124396

Schuerch, P., Densmore, A.L., McArdell, B.W. & Molnar, P., 2006. The influence of landsliding on sediment supply and channel change in a steep mountain catchment. Geomorphology, 78(3-4): 222-235. https://doi.org/10.1016/j.geomorph.2006.01.025

Schwab, M., Rieke-Zapp, D., Schneider, H., Liniger, M. & Schlunegger, F., 2008. Landsliding and sediment flux in the Central Swiss Alps: A photogrammetric study of the Schimbrig landslide, Entlebuch. Geomorphology, 97(3-4): 392-406. https://doi.org/10.1016/j.geomorph.2007.08.019

Siame, L.L., Angelier, J., Chen, R.F., Godard, V., Derrieux, F, Bourles, D.L., Braucher, R., Chang, K.J., Chu, H.T., Lee, J.C., 2011. Erosion rates in an active orogen (NE-Taiwan): A confrontation of cosmogenic measurements with river suspended loads. Quaternary Geochronology, 6(2): 246-260. https://doi.org/10.1016/j.quageo.2010.11.003

Sidle, R.C., Ziegler, A.D., Negishi, J.N., Rahim Nik, A., Siew, R. & Turkelboom, F., 2006. Erosion processes in steep terrain - Truths, myths, and uncertainties related to forest management in Southeast Asia. Forest Ecology and Management, 224(1-2): 199-225. https://doi.org/10.1016/j.foreco.2005.12.019

Starke, J., Ehlers, T.A. & Schaller, M., 2017. Tectonic and Climatic Controls on the Spatial Distribution of Denudation Rates in Northern Chile (18°S to 23°S) Determined From Cosmogenic Nuclides. Journal of Geophysical Research: Earth Surface, 122(10): 1949-1971. https://doi.org/10.1002/2016JF004153

Tenorio, G.E., Vanacker, V., Campforts, B., Alvarez, L., Zhiminaicela, S., Vercruysse, K., Molina, A. & Govers, G., 2018. Tracking spatial variation in river load from Andean highlands to inter-Andean valleys. Geomorphology, 308: 175-189. https://doi.org/10.1016/j.geomorph.2018.02.009

Tobar, V. & Wyseure, G., 2018. Seasonal rainfall patterns classification, relationship to ENSO and rainfall trends in Ecuador. International Journal of Climatology, 38(4): 1808-1819. https://doi.org/10.1002/joc.5297

Tote, C., Govers, G., Van Kerckhoven, S., Filiberto, I., Verstraeten, G. & Eerens, H., 2011. Effect of ENSO events on sediment production in a large coastal basin in northern Peru. Earth Surface Processes and Landforms, 36(13): 1776-1788. https://doi.org/10.1002/esp.2200

Townsend-Small, A., McClain, M.E., Hall, B., Noguera, J.L., Llerena, C.A. & Brandes, J.A., 2008. Suspended sediments and organic matter in mountain headwaters of the Amazon River: Results from a 1-year time series study in the central Peruvian Andes. Geochimica et Cosmochimica Acta, 72(3): 732-740. https://doi.org/10.1016/j.gca.2007.11.020

von Blanckenburg, F., Belshaw, N. & O'Nions, R., 1996. Separation of 9Be and cosmogenic 10Be from environmental materials and SIMS isotope dilution analysis. Chemical Geology, 129: 93-99. https://doi.org/10.1016/0009-2541(95)00157-3

Vanacker, V., Vanderschaeghe, M., Govers, G., Willems, E., Poesen, J., Deckers, J. & De Bievre, B., 2003. Linking hydrological, infinite slope stability and land-use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds. Geomorphology, 52(3-4): 299-315. https://doi.org/10.1016/S0169-555X(02)00263-5

Vanacker, V., Molina, A., Govers, G., Poesen, J. & Deckers, J., 2007a. Spatial variation of suspended sediment concentrations in a tropical Andean river system: The Paute River, southern Ecuador. Geomorphology, 87(1-2): 53-67. https://doi.org/10.1016/j.geomorph.2006.06.042

Vanacker, V., von Blanckenburg, F., Govers, G., Molina, A., Poesen, J., Deckers, J. & Kubik, P.W., 2007b. Restoring dense vegetation can slow mountain erosion to near natural benchmark levels. Geology, 35(4): 303-306. https://doi.org/10.1130/G23109A.1

Vanacker, V., von Blanckenburg, F., Govers, G., Campforts, B., Molina, A., Kubik, P.W., 2015. Transient river response, captured by the channel steepness and it s concavity. Geomorphology, 228: 234-243. https://doi.org/10.1016/j.geomorph.2014.09.013

Vermeesch, P., 2007. CosmoCalc: An Excel add-in for cosmogenic nuclide calculations. Geochemistry, Geophysics, Geosystems, 8: Q08003. https://doi.org/10.1029/2006GC001530

Vicente-Serrano, S.M., Aguilar, E., Martinez, R., Martin-Hernandez, N., Azorin-Molina, C., Sanchez-Lorenzo, A., El Kenawy, A., Tomas-Burguera, M., Moran-Tejeda, E., Lopez-Moreno, J.I., Revuelto, J., Begueria, S., Nieto, J.J., Drumond, A., Gimeno, L. & Nieto, R., 2017. The complex influence of ENSO on droughts in Ecuador. Climate Dynamics, 48(1-2): 405-427. https://doi.org/10.1007/s00382-016-3082-y

Winter, T., Avouac, J.P. & Lavenu, A., 1993. Late Quaternary Kinematics of the Pallatanga Strike-Slip-Fault (Central Ecuador) from Topographic Measurements of Displaced Morphological Features. Geophysical Journal International, 115(3): 905-920. https://doi.org/10.1111/j.1365-246X.1993.tb01500.x

Yanites, B.J., Tucker, G.E. & Anderson, R.S., 2009. Numerical and analytical models of cosmogenic radionuclide dynamics in landslide-dominated drainage basins. Journal of Geophysical Research: Earth Surface, 114(1). https://doi.org/10.1029/2008JF001088

Publicado

2020-09-02

Cómo citar

Vanacker, V., Guns, M., Clapuyt, F., Balthazar, V., Tenorio, G., & Molina, A. (2020). Distribución espacio-temporal de los deslizamientos y erosión hídrica en una cuenca Andina tropical. Pirineos, 175, e051. https://doi.org/10.3989/pirineos.2020.175001

Número

Sección

Artículos