Pirineos, Vol 171 (2016)

Niveles de LAI/fPAR en superficies afectadas por incendios forestales en Aragón. Análisis mediante el producto MCD15A2 DE MODIS


https://doi.org/10.3989/Pirineos.2016.171003

Adrián Jiménez Ruano
Departamento de Geografía y Ordenación del Territorio, Instituto de Investigación en Ciencias Ambientales (IUCA). Universidad de Zaragoza, España

Fernando Pérez-Cabello
Departamento de Geografía y Ordenación del Territorio, Instituto de Investigación en Ciencias Ambientales (IUCA). Universidad de Zaragoza, España

Raquel Montorio Llovería
Departamento de Geografía y Ordenación del Territorio, Instituto de Investigación en Ciencias Ambientales (IUCA). Universidad de Zaragoza, España

Resumen


El índice de área foliar (LAI) y la fracción de radiación activa fotosintética absorbida por la vegetación (fPAR) son variables relacionadas con la estructura del dosel vegetal que pueden aportar nuevas claves en la comprensión del proceso de regeneración vegetal en zonas quemadas. En este contexto, el objetivo del trabajo es caracterizar diferentes superficies quemadas en Aragón en función del producto MDC15A2 (LAI/fPAR) de MODIS. Se realizan dos tipos diferentes de análisis: (1) análisis estático de los valores de LAI/fPAR a partir del compuesto de 2010; (2) seguimiento multianual en 6 grandes incendios ocurridos en la década de los 2000, representativos de condiciones ambientales diferentes. El proceso metodológico se basa en la selección de 18 incendios forestales (> 500 ha, ocurridos entre 1975-2010) que dispusieran de la cartografía digital; y en la descarga del producto MCD13A2 de MODIS (compuestos estacionales de 8 días, primera semana de mayo y septiembre).
Se ha identificado un patrón temporal de recuperación en los valores de LAI. En incendios ocurridos hace más de 35 años se recogen valores promedio de LAI >1 (1,13/1,40, en septiembre y mayo respectivamente), y valores de fPAR bajos (~ 0,5). Mientras, un año después del fuego los valores promedio de LAI/fPAR no superan el 0,20/0,40, respectivamente. Por otro lado, unos meses tras el fuego se han registrado valores promedio de LAI <0,25. En términos generales, el producto MODIS MDC15A2 (LAI/fPAR) presenta un enorme potencial en el análisis cartográfico de los procesos biológicos de zonas quemadas, a pesar de los problemas de interpretación derivados de la resolución espacial del producto.

Palabras clave


Incendio forestal; LAI; fPAR; MODIS; Aragón

Texto completo:


HTML PDF XML

Referencias


Chen, J. M. & Black, T. A., 1992. Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15 (4): 421-429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.x

Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M. & Plummer, S. 1997. Leaf area index of boreal forests: Theory, techniques and measurements. Journal of Geophysical Research. Atmospheres, 102: 429-443. https://doi.org/10.1029/97JD01107

Chuvieco, E., Giglio, L. & Justice, C. O., 2008. Global Characterization of Fire Activity: Towards Defining Fire Regimes From Earth Observation Data. Global Change Biology, 14: 1488-1502. https://doi.org/10.1111/j.1365-2486.2008.01585.x

Cohen, W. B., Maierpserger, T. K., Gower, S. T., & Turner, D. P. 2003. An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sensing of Environment, 84: 561-571. https://doi.org/10.1016/S0034-4257(02)00173-6

Díaz-Delgado, R. & Pons, X., 2001. Spatial patterns of forest fires in Catalonia (NE of Spain) along the period 1975–1995: analysis of vegetation recovery after the fire. Forest Ecology and Management, 147: 67-74. https://doi.org/10.1016/S0378-1127(00)00434-5

Durá, E., Mendiguren, G., Pacheco, J., Martín, M. P., Ria-o, D., Iturrate, M., Gimeno, C. & Carrara, A., 2013. Validación de productos MODIS relacionados con la estimación de flujos de carbono en un ecosistema de dehesa. GeoFocus, 13(1): 291-310.

Fensholt, R., Sandholt, I. & Rasmussen, M. S., 2004. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sensing of Environment, 91: 490-507. https://doi.org/10.1016/j.rse.2004.04.009

Frazier, A. E., Renschler, C. S. & Miles, S. B., 2013. Evaluating post-disaster ecosystem resilience using MODIS GPP data. International Journal Applied Earth Observation, 21: 43-52. https://doi.org/10.1016/j.jag.2012.07.019

Gao, B.-C., 1996. NDWI A Normalized Difference Water Index for Remote Sensing of Vegetation. Liquid Water From Space. Remote Sensing of Environment, 58: 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3

Gilabert, M. A., González-Piqueras, J. & García-Haro, J., 1997. Acerca de los índices de vegetación. Revista de Teledetección, 8: 35-45.

Glenn, E., Huete, A. R., Nagler, P. L. & Nelson, S. G., 2008. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors, 8: 2136-2160. https://doi.org/10.3390/s8042136 PMid:27879814 PMCid:PMC3673410

Huete, A. R., 1988. A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of the Environment, 25: 295-309. https://doi.org/10.1016/0034-4257(88)90106-X

Iwata, H., Ueyama, M., Iwama, C. & Harazono Y., 2013. A variation in the fraction of absorbed photosynthetically active radiation and a comparison with MODIS data in burned black spruce forests of interior Alaska. Polar Science, 7: 113-124. https://doi.org/10.1016/j.polar.2013.03.004

Jones, H. G. & Vaughan, R. A., 2010. Remote sensing of vegetation. Principles, techniques and applications. New York, USA: Oxford University Press.

Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R. E. & El-Saleous, N., 2002. An overview of MODIS land data processing and product status. Remote Sensing of Environment, 83: 3-15. https://doi.org/10.1016/S0034-4257(02)00084-6

Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Diner, D. J. & Running, S. W., 1998. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. Journal Geophysics Research, 103: 32257-32275. https://doi.org/10.1029/98JD02462

López, F., Cabrera, M. & Cuadrat, J. M., 2007. Atlas climático de Aragón. Gobierno de Aragón. ISBN 978-84-8380-071-3.

Mooney, H. A. & Hobbs, R. H., 1986. Resilience at the individual plant level. In: Dell, D., Hopkins, A.J.; Lamont, B.B. (eds) Resilience in Mediterrenean type ecosystems, 65-82 pp. La Haya. https://doi.org/10.1007/978-94-009-4822-8_5

Myneni, R., Knyazikhin, Y., Glassy, J., Votava, P. & Shabanov, N., 2003. FPAR, LAI (ESDT: MOD15A2) 8-day Composite NASA MODIS Land Algorithm, User's Guide. MODIS website.

Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y. Wang, Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl, M., Morisette, J. T., Votava, P., Nemani, R. R. & Running, S. W., 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83: 214-231. https://doi.org/10.1016/S0034-4257(02)00074-3

Nemani, R., Pierce, L., Running, S. & Band, L., 1993. Forest ecosystem processes at the watershed scale: sensitivity to remotely sensed leaf-area index estimates. International Journal of Remote Sensing, 14 (13): 2519-2534. https://doi.org/10.1080/01431169308904290

Norman, J. M. & Campbell, G. S., 1989. Canopy structure, Plant Physiological Ecology: Field Methods and Instrumentation. R. W. Pearcy, et al., 301-326, Chapman and Hall. pp.: 301-326. New York.

Pausas, J. G., 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean Basin). Climatic Change, 63: 337- 350. https://doi.org/10.1023/B:CLIM.0000018508.94901.9c

Pausas, J.G., 2012. Incendios forestales. Catarata y CSIC, 128 pp., Zaragoza.

Pérez-Cabello F., 2002. Paisajes forestales y fuego en el Prepirineo occidental oscense. Un modelo regional de reconstrucción ambiental. Serie Investigación 33. Publicaciones del Consejo de Protección de la Naturaleza de Aragón, 358 pp., Zaragoza.

Pérez-Cabello, F., Cerdà, A., de la Riva, J., Echeverría, M. T., García-Martín, A., Ibarra, P., Lasanta, T., Montorio, R. & Palacios, V., 2012. Micro-scale post-fire surface cover changes monitored using high spatial resolution photography in a semiarid environment: A useful tool in the study of post-fire soil erosion processes. Journal of Arid Environments, 76: 88-96. https://doi.org/10.1016/j.jaridenv.2011.08.007

Romo Leon, J. R., van Leeuwen, W. J. D. & Casady, G. M., 2012. Using MODIS-NDVI for the Modeling of Post-Wildfire Vegetation Response as a Function of Environmental Conditions and Pre-Fire Restoration Treatments. Remote Sensing, 4(3): 598-621. https://doi.org/10.3390/rs4030598

Ruíz de la Torre, J. 1990a. Mapa forestal de Espa-a. Escala 1:200.000. Hoja 8-3. Huesca. Ministerio de Agricultura, Pesca y Alimentación. Madrid.

Ruíz de la Torre, J. 1990b. Mapa forestal de Espa-a. Escala 1:200.000. Hoja 7-4. Zaragoza. Ministerio de Agricultura, Pesca y Alimentación. Madrid.

Serbin, S. P., Ahl, D. E. & Gower, S. T., 2013. Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence. Remote Sensing of Environment, 133: 71-84. https://doi.org/10.1016/j.rse.2013.01.022

Steinberg, D. C., Goetz, S. J., & Hyer, E. J., 2006. Validation of MODIS FPAR products in boreal forests of Alaska. IEEE Transactions on Geoscience and Remote Sensing, 44: 1818-1828. https://doi.org/10.1109/TGRS.2005.862266

Tanase, M., de la Riva, R. R., Santoro, M., Pérez-Cabello, F. & Kasischke, E., 2011. Sensitivity of SAR data to post-fire forest regrowth in Mediterranean and boreal forests. Remote Sensing of Environment, 115: 2075-2085. https://doi.org/10.1016/j.rse.2011.04.009

Turner, D., Cohen, W., Kennedy, R., Fassnacht, K. & Briggs, J., 1999. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sensing of Environment, 70: 2-68. https://doi.org/10.1016/S0034-4257(99)00057-7

Vicente-Serrano, S. M., Pérez-Cabello, F. & Lasanta, T., 2011. Pinus halepensis regeneration after a wildfire in a semiarid environment: assessment using multitemporal Landsat images. International Journal of Wildland Fire, 20: 195-208. https://doi.org/10.1071/WF08203

Viedma, O., Melia, J., Segarra, D. & García-Haro, J., 1997. Modeling rates of ecosystem recovery after fires by using Landsat TM data. Remote Sensing of Environment, 61: 383-398. https://doi.org/10.1016/S0034-4257(97)00048-5

Villar, L., 1990. Vegetación. En: Mapa forestal de Espa-a. Escala 1:200.000. Hoja 7-4. Zaragoza, 53- 78 pp., ETSIM e ICONA. Madrid.

Yang, W. Z., Tan, B., Huang, D., Rautiainen, M., Shabanov, N. V., Wang, Y., et al., 2006. MODIS leaf area index products: From validation to algorithm improvement. IEEE Transactions on Geoscience and Remote Sensing, 44: 1885-1898. https://doi.org/10.1109/TGRS.2006.871215

Zarate-Valdez, J. L., Whiting, M. L., Lampinen, B. D., Metcalf, S., Ustin, SL. & Brown, P.H., 2012. Prediction of leaf area index in almonds by vegetation indexes. Computers and Electronics in Agriculture, 85: 24-32. https://doi.org/10.1016/j.compag.2012.03.009




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista fm@ipe.csic.es ypueyo@ipe.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es