North Pyrenean populations of Megabunus diadema (Fabricius, 1779) (Arachnida: Opiliones) are characterized by highly male-biased sex ratios

Las poblaciones Nor-pirenaicas de Megabunus diadema (Fabricius, 1779) (Aracnidos: Opiliones) se caracterizan por una proporción de machos altamente sesgada

 

F. D’Amico1* & S. Danflous2

1 Université de Pau et des Pays de l’Adour, Département d’Écologie, F-64600 Anglet, France - frank.damico@univ-pau.fr
2 Conservatoire d’Espaces Naturels Midi-Pyrénées, 75 voie du TOEC, BP 57611, F- 31076 Toulouse, France - samuel.danflous@espaces-naturels.fr

* Autor corresponsal: frank.damico@univ-pau.fr

 

ABSTRACT

Megabunus diadema (Fabricius, 1779) is an Atlantic and European harvestman species characterized by a discontinuous distribution from Scandinavia to the Iberian Peninsula. With very few male individuals ever observed in the field until now, the biological uniqueness of the species lies in its reproduction mode, hitherto regarded as asexual, facultative parthenogenesis.

Based on a large sample of 741 sexed individuals, the study indicates a sex ratio much higher than what was formerly known, equal to 65.58% of males. Locally varying from 0 to 100% (median 75.5% of males), the sex ratio depends indeed on the altitude and the phenological cycle: the proportion of males decreases with increasing altitude and increases gradually during the spring to reach a plateau in summer. By describing populations locally dominated by male individuals and providing new information on the spatial and temporal patterns of tertiary sex ratio, we question the currently admitted reproduction mode of the species which could be normally sexual, at least locally, rather than asexual.

A distribution map of the species on the northern slope of the Pyrenees is provided for the first time. Our study also complements the distribution for the southern slopes of the Pyrenees and the rest of the Iberian Peninsula published recently by Merino-Sáinz et al. (2013).

 

RESUMEN

Megabunus diadema (Fabricius 1779) es una especie de opilión Atlántica y Europea, caracterizada por una distribución discontinua desde Escandinavia a la Península Ibérica. La singularidad biológica de la especie se encuentra en el modo de reproducción, la partenogénesis facultativa, hasta ahora considerada como asexual. De hecho, hasta el momento se han observado muy pocos individuos masculinos en el campo.

Los resultados de este estudio muestran, sobre una amplia muestra (741 individuos sexuados), que la proporción de sexo masculino es muy superior a lo conocido hasta ahora (65%). Localmente este porcentaje puede variar entre 0 y 100% (mediana del 75,5% para los machos). Los resultados muestran que la proporción de sexos depende de la altitud y del ciclo fenológico: la proporción de machos disminuye con la altitud y aumenta gradualmente durante la primavera hasta llegar a una meseta en verano. Para describir las poblaciones dominadas localmente por individuos masculinos y proporcionar nueva información sobre los patrones espaciales y temporales de la proporción de sexos en poblaciones adultas, cuestionamos el modo de reproducción actualmente admitido de la especie que podría ser normalmente sexual, al menos localmente, en lugar de asexual.

Se proporciona, por primera vez, un mapa de distribución de la especie en la vertiente norte de los Pirineos. Nuestro estudio también complementa el estudio publicado recientemente por Merino-Sáinz et al. (2013) sobre su distribución en la vertiente sur de los Pirineos y en el resto de la Península Ibérica.

 

Recibido: 06-05-2015. Aceptado: 05-10-2015. Fecha de publicación on-line: 28/10/2015.

Citation / Cómo citar este artículo: D’Amico, F. & Danflous, S. (2015). North Pyrenean populations of Megabunus diadema (Fabricius, 1779) (Arachnida: Opiliones) are characterized by highly male-biased sex ratios. Pirineos, 170, e016. doi: http://dx.doi.org/10.3989/Pirineos.2015.170009

KEYWORDS: Tertiary sex ratio; parthenogenesis; altitude; Pyrenees.

PALABRAS CLAVE: Ratio sexual; partenogénesis; altitud; Pirineos.

Copyright: © 2015 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 3.0 License.


 

CONTENTS

ABSTRACT

RESUMEN

Introduction

Methods

Results

Discussion

Acknowledgments

References

Annex

1. IntroductionTop

Described for the first time under the binominal name Phalangium diadema by Fabricius (1779), the nomenclature of the species was complicated with its subsequent description under two different species names: Meade (1855) recognized a different species from British and Irish individuals under the name of Megabunus insignis while Simon (1881) described then Megabunusgrouvellei from an individual from Hautes-Pyrénées (cirque of Troumouse). Both species were later synonymised (Thorell, 1876; Martens 1978). Megabunusdiadema(Fabricius, 1779) is indeed an unmistakable species, easily identified from its crown of spines on the ocularium (D’Amico, 2015), both in the male and in the female, at any age. Observed both in coastal environment and in mountain woodland, this species astonishes by its eurytopy: in Iceland for example, the species is found near the sea (where individuals are mostly observed on wet cliffs) and also further inland (where they are found mostly on mosses and debris) (Agnarsson, 1998); moreover, it is rather a woodland species (in particular mountain woodlands but not exclusively), where the species is found on the ground, on rocks or tree trunks (Curtis & Morton 1974). Its distribution is typically Atlantic European (Martens, 1978; Rambla, 1985, 1998; Stol, 2005), discontinuous from Scandinavia to the Iberian Peninsula (Simon, 1879; Martens 1978; Stol, 2005, 2007; Muranyi, 2008; Agnarsson, 1998; Kauri, 1980; Feliú, 1981; Rambla, 1980, 1985, 1998; D’Amico, 1988; D’Amico & Besson, 1995, Fain & D’Amico, 1997; Cawley, 2002; Iorio, 2003; Delfosse, 2004; Delfosse & Iorio, 2009; Hillyard, 2005). Recently its distribution in Spain has been updated by Merino-Sáinz et al. (2013) who stated the species might even reach Portugal.

If the outlines of its overall biogeographic area are better known, there are still some gaps about the ecological envelope of the species, especially at the meso- and micro-habitat scales. For example, the limits of its altitudinal distribution are still imprecise and ecological versatility is yet to be characterized. The biggest gaps and contradictions concern the reproduction of the species. Many authors have already pointed out that Megabunus diadema is a facultative parthenogenetic species (Phillipson, 1959; Feliú, 1981; Stol, 2005). The majority of the information provided in the literature as well as, marginally, in discussion forums (webography not supplied) report mostly female individuals sightings. For example, in England, Phillipson (1959) found a single male individual versus 406 females during his survey. In Norway, the proportion provided by Stol (2005) is comparable, 3 males to 261 females. In Spain, the tendency to over-representation of females is also reported by Merino-Sáinz et al. (2013), although the proportion of males is slightly higher than elsewhere (8 males to 51 females) but they recognize possible local variation of this proportion, namely in the Huesca region where the largest number of males was found (7 males off the total of eight found). By contrast, D’Amico & Besson (1995) already described an overrepresentation of males in the population monitored in the Ossau Valley, on the northern slope of the Pyrenees.

Based on current knowledge, Megabunus diadema appears to be a species with highly biased sex ratio in favour of females throughout its range, with the exception of the Pyrenean populations. The main objective of this work is to quantify for the first time this variation in the sex ratio of the north-Pyrenean populations by examining the patterns of variation in spatial dimensions (focusing here on altitude) and temporal dimension (here adult development period).

This work is also used to update the distribution of the species on the northern slope of the Pyrenees and to specify the limits of its altitudinal distribution.

2. MethodsTop

Data were collected between 1988 and 2014 (see also D’Amico, 1988; D’Amico & Besson 1995) by sight sampling, methodically searching for individuals of the species on favorable substrates (rocks, trunks ...). These original presence data (see Annex), combined with historical data (Simon, 1881), and other published data (Evenou, undated; Ledoux & Emerit, 2006), allow to establish the distribution map of the species on the northern side of the Pyrenees. Data published by Merino-Sáinz et al. (2013) for the south side are not taken into account.

The characterization of the sex ratio and its spatial and temporal variation was made from a subset of this data set, putting as strong conditions a reliable identification of males and females and a minimum number of 3 individuals in the sample. In accordance with the definitions proposed by West (2009), the sex ratio is the proportion of males in a population. Although the term sex ratio is used indiscriminately throughout this paper, figures provided in this study relate only to the tertiary sex ratio, defined as the ratio for mature organisms (adults). Primary sex ratio (ratio at the time of conception) and secondary sex ratio (ratio at birth) are not evaluated in this work.

The patterns of spatial and temporal variation in the sex ratio are analysed in a descriptive manner using multiple boxplots built with the commands “geom_boxplot» and «geom_jitter” of ggplot2 package for the free software R (R Core Team, 2012). These commands of the package ggplot2 (Wickham, 2009) allow to superimpose all raw data as points to the conventional box plots. In boxes presented here, the horizontal line represents the median and the upper and lower “hinges” correspond to the first and third quartiles (the 25th and 75th percentiles).

3. ResultsTop

3.1. Geographic distribution

The species has a wide distribution over the whole French Pyrenees (Figure 1), with an apparent under-representation in the easternmost part. Indeed, we provide the first records of this species in the departments of Haute-Garonne and Ariège. To date, no record of the species has been made in the department of Aude. The species was already cited from the Pyrénées-Atlantiques (Simon, 1879; D’Amico, 1988) and Hautes-Pyrénées (Simon, 1881) whilst its presence was first recorded recently (Ledoux & Emerit, 2006) in the Pyrénées-Orientales from two close locations.

Figure 1: Updated distribution of Megabunus diadema on the northern slope of the Pyrenees, from original data (• black dots / mainly F. D’Amico & S. Danflous, see also contributors in the section «Acknowledgements»)and the sparse historical data (✰ red stars). Dark lines delineate the administrative boundaries of Département Pyrénées-Atlantiques (64), Hautes-Pyrénées (65), Haute-Garonne (31), Ariège (09), Aude (11) and Pyrénées-Orientales (66).

Figura 1: Distribución actualizada de Megabunus diadema en la vertiente norte de los Pirineos, a partir de datos originales (• puntos negros: principalmente, F. D’Amico y S. Danflous, ver también colaboradores en la sección «Agradecimientos») y los datos históricos escasos (✰ estrellas rojas). Las líneas oscuras delinean los límites administrativos de los departamentos de los Pirineos Atlánticos (64), Altos Pirineos (65), Haute-Garonne (31), Ariège (09), Aude (11) y Pirineos Orientales (66).

3.2. Altitudinal distribution

The altitudinal distribution profile for Megabunus diadema in the Pyrenees is established from an original dataset of 82 records. The species is found between 220 and 1920 m, with a mean altitudinal value of 1143 m (median value 1182 m).

3.3. Sex-ratio

The characteristics of the sex ratio are based on a sample of 54 records, with an average of 13.7 individuals per record (range: 3-37 individuals). In total, 741 individuals were sexed during the study, 486 males and 255 females, corresponding to a total value of sex ratio equal to 65.58%. In statistical terms, for the entire dataset, the sex-ratio varies between 0 and 100%, with an average of 64.0% and a median of 75.5%.

The great variability in the sex ratio results in a decrease in the proportion of males as altitude increases (Figure 2): high (ca 80%) between 400 and 1200 m, it recedes quickly in its upper altitudinal range to a median value of around 30%.

Figure 2: Variation of sex ratio in Megabunus diadema on the northern slope of the Pyrenees (n = 53 observations), according to altitude, split into 7 blocks from 400 m to 1800 m.

Figura 2: Variación de la proporción de sexos en Megabunus diadema en la vertiente norte de los Pirineos (observaciones n = 53), de acuerdo con la altitud, dividida en 7 bloques de 400 m. a 1.800 m.

The sex ratio shows a well marked pattern in temporal variation, indicated by a gradual increase during the spring and a plateau in the summer (Figure 3). Lower than 50% in May, when adults appear, it reaches a median value of around 90% in July and August.

Figure 3: Monthly variation of sex ratio in Megabunus diadema on the northern slope of the Pyrenees (n = 53 observations), from May to August.

Figura 3: Variación mensual del índice de masculinidad en Megabunus diadema en la vertiente norte de los Pirineos (observaciones n = 53), de mayo a agosto.

4. DiscussionTop

A distribution map of the species on the northern slope of the Pyrenees is provided for the first time, with mostly new records from all the french Pyrenees. Apparent under-representation in the easternmost part (namely departement of Ariège and Aude) is probably an artifact, resulting from a relative lower field survey pressure in this area. Our study complements the one recently compiled by Merino-Sáinz et al. (2013) for the southern side of the Pyrenees and the rest of the Iberian Peninsula. Our work provides new and original information on the variability of the tertiary sex ratio of this species whose notable originality lies in its reproduction mode: considered until now as facultative parthenogenesis, with very few male individuals observed in the nature, our study (involving 741 individuals in total, the largest number of individuals ever studied in this species) leads to an opposite conclusion, at least in the northern Pyrenees, and emphasizes for the first time the possibility for this species to be a sexually reproducing one.

4.1. Distribution

In his review on mountain harvestmen, Beron (2002) indicates that many species can live or survive at high altitude. In Europe, he cites at least 47 species reaching or exceeding 2200 m; they belong to 6 families (Phalangidae, Sclerosomatidae, Ischyropsalididae, Trogulidae, Sabaconidae and Nemastomatidae). Of these, only 14 species are observed at 2500 m and only 3 reach 3500 m (corresponding to the so-called “nival” vegetation belt). The Megabunus genus belongs to this tiny assemblage of high altitude species, with altitudinal records of 3200 m for Megabunus armatus (Kulczynski, 1887) and 3000 m for Megabunus rhinoceros (Canestrini, 1872) in the Alps (Beron, 2002). On the northern side of the Pyrenees (Figure 1), Megabunus diadema has a wide altitudinal range (220 - 1920 m) with a likely preference for the “montane” vegetation belt (dominated by beech and fir woodland in particular; see D’Amico & Besson, 1995), given that the mean elevation is 1143 m (median value: 1188 m). With a maximum altitude of 1920 m recorded in this study, Megabunusdiadema does not reach the highest peaks of the Pyrenees (culminating at 3404 m, Pico de Aneto).

However, a deficit of field surveying beyond the tree line is not discarded. These values are narrower than those published by Merino-Sáinz et al. (2013) for geographically close populations on the southern slope of the Pyrenees (mean elevation: 1298 m; range: 800 to 2150 m) and in the Cantabrian Mountains (mean elevation: 561 m; range: 2 to 1450 m). The climatic contrast between the southern side and northern side of the Pyrenees explains this difference, through the well-known increase in vegetation belts of vegetation on the southern side (Gruber, 1978; Rameau et al., 1993) compared to the northern side.

4.2. Sex-ratio

The sex ratio of a population, or a set of several local populations (whether connected or not), is a key structural variable of their natural history, as it underpins the behaviour, the social structure and the dynamics of the reproductive system (Charnov, 1982; Edwards, 1998; Frank, 1998; Hardy, 2002; West, 2009). As a result, understanding what generates sex ratio variations, is an important element to model the future growth of the population, sustainability and its vulnerability to extinction, especially when the sex ratio is asymmetrical (i.e. strongly biased in favour of one sex).

Many arachnids [including spiders - see for instance Vollrath & Parker (1992) and Aviles et al. (2000) and harvestmen - see for example Tsurusaki (1986)] show a remarkable variety of reproductive phenotypes, such as parthenogenesis, and a very strong asymmetry of the sex ratio. Megabunus diadema is an outstanding example, although available knowledge so far published mix parthenogenesis and asymmetrical sex ratio, concluding (without demonstration yet) that this limited number of males necessarily induce parthenogenesis, may this parthenogenesis be facultative. As already pointed, Philipson (1959) had described the species as parthenogenetic in England from a tertiary sex ratio of 0.25% (1 single male observed among 407 individuals), as did Stol (2005) who observed 3 males among 264 individuals (raising thus a tertiary sex ratio of 1.13 %). In the Iberian Peninsula, the recent study by Merino-Sáinz et al. (2013) reached the same finding, a highly skewed sex ratio in favour of females with a tertiary sex ratio of 13.5% (8 males observed among 59 individuals). Our study contrasts sharply with those three published studies, to the extent that we observe a skewed sex ratio in favour of males, with a tertiary sex ratio of 65.6% (486 males observed among 741 individuals). The fact that we have a higher number of individuals in the sample [741 for this study, versus 407, 264 and 59 for previously published studies: Philipson (1959), Stol (2005) and Merino-Sáinz et al. (2013) respectively] cannot alone explain the contrast. If existing, a possible bias is to be searched in the spatial and temporal variability that we characterize here for the first time, for which we describe the specific patterns. The comparison of total tertiary sex ratio (i.e. for the entire sample) as we have done for 4 populations (England, Norway, Iberian Peninsula vs northern Pyrenees) may conceal some possibly unobserved intra-populational variability and does not include the effects of altitude, time, and more importantly the interaction between altitude and time. Despite Merino-Sáinz et al. (2013) noticed that sex-ratio may locally reach a value of 30% (in the region of Huesca where 3 males and 27 females were found), our work is the only one published to date that describes the subtlety of these altitudinal and temporal variations, preventing yet further comparison.

Since the study populations in our study and that of Merino-Sáinz et al. (2013) are geographically very close, and given that the period of study is contemporary in both cases (hence excluding the possibility for any historical change in sex ratio), we advocate further studies in the whole Pyrenees mountain to understand the remarkable contrast in sex-ratios, especially in the light of recent findings. Among Arachnids, as has recently been shown for the spider Oedothorax retusus (Westring, 1851), one of the potential causes of variation in sex ratio is the level and patterns of infection by bacteria endosymbionts of maternal origin that can alter the sex ratio of offspring of a mother in order to increase their own physical condition (Vanthournout et al., 2014)

The existence of altitudinal and temporal variation in the sex ratio of Megabunus diadema had never been described. This even appears to be the first documented case in harvestmen. Moreover, we show that these variations follow clear patterns: the proportion of male decreases with altitude and increases during adult development period (spring and summer). The existence of a relationship between sex ratio and altitude has already been established in other arachnids, particularly the spider Myro kerguelenensis (O. Pickard-Cambridge, 1876) in which the proportion of females increases with altitude (Lee et al., 2011). In such a case, the explanations are related to resource limitation and an increase in the prevalence of sexual cannibalism with altitude.

However, the interaction between the effect of altitude and time remains to be described because it may obscure the patterns of variation. We cannot exclude the existence of other spatially-related effects (for example a possible East/West gradient). Undoubtedly, these relationships may also be affected by differences in habitat use by females and males, as has been shown for other arachnids. These aspects deserve further investigations, especially because environmental changes quickly alter habitats and drive rapid adaptive responses by species (Bowden et al., 2015).

Revealing a preponderance of males never suspected before in this species and describing extreme variability of tertiary sex ratio values within the population (or populations) on the northern slope of the Pyrenees, we feed the debate on the mode of reproduction of the species (is Megabunus diadema really an asexual, parthenogenetic species?), and put forward the interest of this species as a model to study the underlying mechanisms in populations with a strong distortion of sex ratio.


AcknowledgmentsTop

We thank those who have shared their observations of Megabunus diadema: C. Bergès, F. Blanc, S. Cally, S. Déjean, N. Gouix, L. Valladarès, Y. Evenou. We are also grateful to the editor and both anonymous reviewers for their comments, which helped us to improve the manuscript.

ReferencesTop

Agnarsson, I., 1998. Íslenskar langfætlur og drekar. Fjölrit Náttúrufræðistofnunar, 35: 1-36.
Aviles, L., McCormack, J., Cutter, A. & Bukowski, T., 2000. Precise, highly female-biased sex ratios in a social spider. Proceedings of the Royal Society of London Series B-Biological Sciences, 267: 1445–1449. http://dx.doi.org/10.1098/rspb.2000.1162
Beron, P., 2002. On the High Mountain Opilionida (Arachnida) in the Old World. Historia Naturalis Bulgarica, 14: 45-65
Bowden, J.J., Hansen R.R., Olsen, K., & Høye, T.T., 2015. Habitat-specific effects of climate change on a low-mobility Arctic spider species. Polar Biology, 38 (4): 559-568. http://dx.doi.org/10.1007/s00300-014-1622-7
Canestrini, G., 1872. Nuove specie di Opilionidi Italiani. Annuario della Società dei Naturalisti di Modena, 6: 221–225.
Cawley, M., 2002. A review of the Irish harvestmen (Arachnida: Opiliones). Bulletin of the Irish Biogeographical Society, 26: 106-137.
Charnov, E. L. 1982. The theory of sex allocation. Princeton Univ. Press, Princeton, NJ.
Curtis, D.J. & Morton, E., 1974. Notes on spiders from tree trunks of different bark texture; with indices of diversity and overlap. Bulletin of the British Arachnological Society, 3: 1-5.
D’Amico, F., 1988. Les opilions de la vallée d’Ossau (Pyrénées-Atlantiques; France). Note préliminaire. Documents d’Ecologie Pyrénéenne, 5: 145-156.
D’Amico, F., 2015. Polymorphisme de l’épine frontale et du diadème oculaire chez Megabunus diadema (Fabricius, 1779) (Arachnida, Opiliones). Revue Arachnologique, 2(2): 34-37.
D’Amico, F. & Besson, J.P., 1995. Les Opilions dans les écosystèmes montagnards pyrénéens. I. Les Opilions de la haute vallée d’Ossau (Pyrénées-Atlantiques; France). Pirineos, 145: 93-102. http://pirineos.revistas.csic.es/index.php/pirineos/article/view/149/148
Delfosse, E., 2004. Catalogue préliminaire des Opilions de France métropolitaine (Arachnida Opiliones). Le Bulletin de Phyllie, 20: 34-52.
Delfosse, E. & Iorio, E., 2009. Contribution à la connaissance des Opilions de France métropolitaine (Arachnida: Opiliones). I. Bulletin de la Société Linneenne de Bordeaux, 144 (N.S.). 37 (1): 99-106.
Edwards, A. W. F., 1998. Natural selection and the sex ratio: Fisher’s sources. American Naturalist, 151: 564–569. http://dx.doi.org/10.1086/286141
Evenou, Y., non daté. Inventaire des Arachnides de l‘Espace Naturel Sensible d‘Intérêt Départemental de Nyer (Arachnida: Araneae, Opiliones) France, Pyrénées Orientales. Rapport d‘inventaire, Association Roussillonaise d‘Entomologie, Perpignan: 40 pp.
Fabricius, J.C., 1779. Reise nach Norwegen mit Bemerkungen aus der Naturhistorie und Oekonomie. Carl Ernst Bohn, Hamburg, pp. lxiv + 388.
Fain, A. & D’Amico, F., 1997. Observations on the larval mites (Acari) parasitic on Opiliones from the French Pyrenees. International Journal of Acarology, 23(1): 39-48. http://dx.doi.org/10.1080/01647959708684118
Feliù, J., 1981. Contribución al conocimiento de los Opiliones de Navarra. Tesis de Licenciatura. Universidad de Navarra.
Frank, S. A., 1998. Foundations of social evolution. Princeton Univ. Press, Princeton, NJ.
Gruber, M., 1978. La végétation des Pyrénées ariégoises et catalanes occidentales. Université Aix-Marseille.
Hardy, I. C. W., 2002. Sex ratios: concepts and research methods. Cambridge Univ. Press, Cambridge, U.K.
Hillyard, P. D., 2005. Harvestmen. Synopses of the British Fauna (New Series). No. 4 (Third edition). The Linnean Society of London & The Estuarine and Coastal Sciences Association, 167 pp.
Iorio, E., 2003. Première contribution à l’inventaire des Opilions (Arachnida) de Moselle (57). Bulletin de Phyllie, 16: 33-37.
Kauri, H., 1980. Terrestrial invertebrates of the Faroe Islands: II. Harvestspiders. Fauna Norvegica, 27(1-2): 72-75.
Kulczynski, W., 1887. Symbola and Faunam Arachnoidarum Tirolensem. Rozprawy i sprawozdania z posiedzeń Wydzialu Matematyczno-Przyrodniczego Akademii Umiejętności, Kraków, 16 : 245–356.
Ledoux, J.C. & Emerit, M. 2006. Araignées et opilions de la réserve naturelle de Prats de Mollo (Pyrénées Orientales). Office pour les Insectes et leur environnement du Languedoc-Roussillon, 21 pp.
Lee, J.E., Somers, M.J. & Chow, S.L., 2011. Density, body size and sex ratio of an indigenous spider along an altitudinal gradient in the sub-Antarctic. Antarctic Science, 24(1): 15-22. http://dx.doi.org/10.1017/S0954102011000629
Martens, J., 1978. Weberknechte, Opiliones. Gustav Fischer Verlag. Jena, Mainz. 465 pp.
Meade, R.H., 1855. Monograph on the British Species of Phalangiidae or Harvest-men. Annals and Magazine of Natural History, 15(90): 393–416.
Merino-Sáinz, I., Fernández-Álvarez, F.A. & Prieto, C.E., (2013). Nuevos datos sobre Megabunus diadema (Fabricius, 1779) (Opiliones: Phalangiidae). Revista Ibérica de Aracnología, 22: 102-106. http://www.sea-entomologia.org/PDF/RIA22/102106RIA22NCMegabunusdiadema.pdf
Muranyi, D., 2008. The first species of the genus Megabunus Meade, 1855 (Opiliones: Phalangiidae) in the Balkan region. Opuscula Zoologica (Budapest), 39: 53-63.
Pickard-Cambridge, O., 1876. On a new order and some new genera of Arachnida from Kerguelen’s Land. Proceedings of the Zoological Society of London, 1876: 258-265.
Phillipson, J., 1959. The seasonal occurrence, life histories and fecundity of Harvest-spiders (Phalangida, Arachnida) in the neighborhood of Durham City. Entomologist’s Monthly Magazine, 95: 134-138.
R Core Team, 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
Rambla, M., 1980. Contribución al conocimiento de la fauna cavernícola del País Vasco. Arachnida, Opiliones. Kobie, 10: 529-533.
Rambla, M., 1985. Artrópodos epigeos del macizo de San Juan de la Peña (Jaca, Huesca). IV. Opiliones. Pirineos, 124(1): 87-168.
Rambla, M., 1998. Opiliones (Arachnida) presentes en la fauna aragonesa. Catalogus de la entomofauna aragonesa, 17: 3-7.
Rameau, J.C., Mansion, D. & Dumée, G., 1993. Flore forestière française. Tome 2: Montagnes. Paris, IDF, MAP/DERF; 2421 pp.
Simon, E., 1879. Les Arachnides de France. T. 7. Ordres des Chernetes, Scorpiones et Opiliones. Librairie Encyclopédique de Roret, Paris, pp. 1-332, pl. 17-24. [Opiliones pp. 116-332, pl. 21-24].
Simon, E., 1881. Arachnides nouveaux ou rares de la faune française. Bulletin de la Société Zoologique de France, Paris, 6: 82-91.
Stol, I., 2005. Ecology and body size of the parthenogenetic Megabunus diadema (Fabricius. 1779) (Opiliones: Phalangiidae) at Karmøy. Western Norway. Fauna Norvegica, 25: 39-44.
Stol, I. 2007. Checklist of Nordic Opiliones. Norwegian Journal of Entomology, 54: 23-26.
Thorell, T.T.T., 1876. Sopra alcuni Opilioni (Phalangidea) d’Europa e dell’Asia occidentale, con un quadro dei generi europei di quest’ Ordine. Annali del Museo Civico di Storia Naturale di Genova, Genova, (series 1) 8: 452-508.
Tsurusaki, N., 1986. Parthenogenesis and geographic variation of sex ratio in two species of Leiobunum (Arachnida, Opiliones). Zoological Science, 3: 517-532.
Vanthournout, B., Vandomme, V. & Hendrickx, F., 2014. Sex ratio bias caused by endosymbiont infection in the dwarf spider Oedothorax retusus. Journal of Arachnology, 42(1): 24-33. http://dx.doi.org/10.1636/Hi12-37.1
Vollrath, F. & Parker, G.A., 1992. Sexual dimorphism and distorted sex ratios in spiders. Nature, 360: 156-159. http://dx.doi.org/10.1038/360156a0
West, S.A., 2009. Sex allocation. Princeton Univ. Press, Princeton, NJ.
Westring, N., 1851. Förteckning öfver de till närvarande tid Kände, i Sverige förekommande Spindlarter, utgörande ett antal af 253, deraf 132 äro nya för svenska Faunan. Göteborgs Kungliga Vetenskaps och Vitterhets Samhälles Handlingar, 2: 25-62.
Wickham, H., 2009. ggplot2: elegant graphics for data analysis. Springer, New York.

ANNEXTop

New distribution data of Megabunus diadema in the French Pyrenees

Distribución de nuevos datos de Megabunus diadema en los Pirineos franceses

Code Date Collection Identification Commune Department Latitude Longitude Altitude Depositary
64-1 06/08/1986 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°50’47.6” W 0°27’47.0” 1590 D’Amico F.
64-2 12/08/1986 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°53’18.5” W 0°25’01.9” 1140 D’Amico F.
64-3 19/08/1986 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°53’56.2” W 0°25’14.6” 1190 D’Amico F.
64-4 21/08/1986 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°53’02.5” W 0°25’33.6” 1150 D’Amico F.
64-5 29/05/1988 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°51’08.0” W 0°27’44.2” 1540 D’Amico F.
64-6 14/06/1988 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°52’40.8” W 0°24’38.8” 1545 D’Amico F.
64-7 29/06/1988 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°49’36.0” W 0°23’29.8” 1460 D’Amico F.
64-8 06/07/1988 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°51’32.3” W 0°26’21.1” 1750 D’Amico F.
64-9 05/06/1989 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°52’09.6” W 0°27’21.2” 1380 D’Amico F.
64-10 18/06/1989 D’Amico F. D’Amico F. Bilheres Pyrénées-Atlantiques (64) N 43°04’05.7” W 0°27’01.6” 955 D’Amico F.
64-11 19/06/1989 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°51’30.8” W 0°23’44.0” 1400 D’Amico F.
64-12 19/06/1989 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°51’25.7” W 0°24’02.5” 1580 D’Amico F.
64-13 22/04/1994 D’Amico F. D’Amico F. Sare Pyrénées-Atlantiques (64) N 43°15’43.5” W 1°37’08.0” 425 D’Amico F.
64-14 26/04/1994 D’Amico F. D’Amico F. Eaux-Bonnes Pyrénées-Atlantiques (64) N 42°56’11.4” W 0°26’21.1” 995 D’Amico F.
64-15 08/06/1994 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°55’48.9” W 0°26’58.7” 770 D’Amico F.
64-16 16/0/1994 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°59’07.0” W 0°26’20.5” 730 D’Amico F.
64-17 16/0/1995 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°58’54.7” W 0°27’06.1” 1090 D’Amico F.
64-18 26/04/1997 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°53’52.9” W 0°26’13.0” 1190 D’Amico F.
64-19 10/05/1997 D’Amico F. D’Amico F. Accous Pyrénées-Atlantiques (64) N 42°55’40.9” W 0°37’36.1” 780 D’Amico F.
64-20 27/06/1997 D’Amico F. D’Amico F. Arudy Pyrénées-Atlantiques (64) N 43°06’02.3” W 0°27’11.4” 450 D’Amico F.
64-21 29/06/1997 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°55’47.2” W 0°27’02.0 “ 900 D’Amico F.
64-22 17/08/1997 D’Amico F. D’Amico F. Eaux-Bonnes Pyrénées-Atlantiques (64) N 42°57’09.1” W 0°19’33.4” 1470 D’Amico F.
64-23 20/06/1998 D’Amico F. D’Amico F. Lées-Athas Pyrénées-Atlantiques (64) N 42°57’26.1” W 0°41’04.4” 1459 D’Amico F.
64-24 20/06/1998 D’Amico F. D’Amico F. Lurbe St-Christau Pyrénées-Atlantiques (64) N 43°07’20.0” W 0°32’25.2” 430 D’Amico F.
64-25 25/06/1998 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°48’28.8” W 0°24’47.4” 1920 D’Amico F.
64-26 03/07/1999 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°50’22.5” W 0°22’38.3” 1510 D’Amico F.
64-27 03/07/1999 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°51’33.1” W 0°23’19.0” 1400 D’Amico F.
64-28 05/07/1999 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°55’06.9” W 0°28’38.7” 1645 D’Amico F.
64-29 16/05/2000 D’Amico F. D’Amico F. Borce Pyrénées-Atlantiques (64) N 42°47’13.1” W 0°33’54.7” 1450 D’Amico F.
64-30 08/06/2000 D’Amico F. D’Amico F. Urdos Pyrénées-Atlantiques (64) N 42°47’44.2” W 0°33’22.4” 1340 D’Amico F.
64-31 22/06/2000 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°54’52.1” W 0°27’37.8” 1450 D’Amico F.
64-32 06/08/2000 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°53’52.9” W 0°26’13.0” 1190 D’Amico F.
64-33 02/05/2001 D’Amico F. D’Amico F. Estérencuby Pyrénées-Atlantiques (64) N 43°06’43.9” W 1°12’25,5” 250 D’Amico F.
64-34 31/07/2001 D’Amico F. D’Amico F. Borce Pyrénées-Atlantiques (64) N 42°46’56.0” W 0°34’02.0” 1675 D’Amico F.
64-35 16/06/2002 D’Amico F. D’Amico F. Eaux-Bonnes Pyrénées-Atlantiques (64) N 42°57’42,6” W 0°24’06.8” 1420 D’Amico F.
64-36 16/06/2002 D’Amico F. D’Amico F. Eaux-Bonnes Pyrénées-Atlantiques (64) N 42°57’57.9” W 0°23’39.7” 1150 D’Amico F.
64-37 12/07/2003 D’Amico F. D’Amico F. Bilheres Pyrénées-Atlantiques (64) N 43°03’34.7” W 0°29’30.9” 1014 D’Amico F.
64-38 13/07/2003 D’Amico F. D’Amico F. Gourette Pyrénées-Atlantiques (64) N 42°57’11.2” W 0°19’32.1” 1463 D’Amico F.
64-39 NA D’Amico F. D’Amico F. Saint-Goin Pyrénées-Atlantiques (64) N 43°13’22.0” W 0°44’28.0” 220 D’Amico F.
64-40 17/07/2012 D’Amico F. D’Amico F. Urdos Pyrénées-Atlantiques (64) N 42°50’44.0” W 0°32’45.7” 1040 D’Amico F.
64-41 24/07/2012 D’Amico F. D’Amico F. Laruns Pyrénées-Atlantiques (64) N 42°54’02.4” W 0°26’59.3” 1590 D’Amico F.
64-42 18/05/2014 D’Amico F. D’Amico F. Sare Pyrénées-Atlantiques (64) N 43°16’41.5” W 01°37’273” 364 D’Amico F.
64-43 18/05/2003 D’Amico F. D’Amico F. Lescun Pyrénées-Atlantiques (64) N 42°56’34.60” W 0°40’42.26” 1100 D’Amico F.
64-44 18/05/2003 D’Amico F. D’Amico F. Lescun Pyrénées-Atlantiques (64) N 42°56’24.88” W 0°41’48.53” 1500 D’Amico F.
64-45 25/04/2010 D’Amico F. D’Amico F. Bilheres Pyrénées-Atlantiques (64) N 43°03’36” W 0°27’16” 762 D’Amico F.
64-46 30/05/2010 D’Amico F. D’Amico F. Bilheres Pyrénées-Atlantiques (64) N 43°04’00” W 0°29’43” 951 D’Amico F.
64-47 20/06/2010 D’Amico F. D’Amico F. Bilheres Pyrénées-Atlantiques (64) N 43°04’08” W 0°30’23” 1080 D’Amico F.
64-48 06/05/2011 D’Amico F. D’Amico F. Bielle Pyrénées-Atlantiques (64) N 43°03’14” W 0°25’20” 437 D’Amico F.
64-49 20/07/2011 D’Amico F. D’Amico F. Arudy Pyrénées-Atlantiques (64) N 43°06’19” W 0°27’07” 421 D’Amico F.
64-50 25/07/2013 D’Amico F. D’Amico F. Castet Pyrénées-Atlantiques (64) N 43°02’13” W 0°21’35” 1345 D’Amico F.
64-51 10/08/2013 D’Amico F. D’Amico F. Bilheres Pyrénées-Atlantiques (64) N 43°04’06” W 0°27’03” 965 D’Amico F.
64-52 NA D’Amico F. D’Amico F. Aussurucq Pyrénées-Atlantiques (64) N 43°06’8.72” W 0°58’1.24” 739 D’Amico F.
64-53 04/06/2014 D’Amico F. D’Amico F. Castet Pyrénées-Atlantiques (64) N 43° 3’54.07” W 0°23’58.07” 524 D’Amico F.
64-54 24/06/2014 D’Amico F. D’Amico F. Lecumberry Pyrénées-Atlantiques (64) N 43° 0’28.40” W 1° 8’28.18” 850 D’Amico F.
64-55 24/06/2014 D’Amico F. D’Amico F. Estérencuby Pyrénées-Atlantiques (64) N 43° 1’47.81” W 1°10’48.14” 940 D’Amico F.
64-56 02/07/2014 D’Amico F. D’Amico F. Mendive Pyrénées-Atlantiques (64) N 43° 5’41.86” W 1° 6’46.68” 550 D’Amico F.
64-57 02/07/2014 D’Amico F. D’Amico F. Lecumberry Pyrénées-Atlantiques (64) N 43° 4’11.33” W 1° 5’28.24” 1045 D’Amico F.
64-58 02/07/2014 D’Amico F. D’Amico F. Mendive Pyrénées-Atlantiques (64) N 43° 2’7.65” W 1° 4’28.46” 980 D’Amico F.
64-59 02/07/2014 D’Amico F. D’Amico F. Larrau Pyrénées-Atlantiques (64) N 43° 1’16.45” W 0°59’37.45” 612 D’Amico F.
65-1 01/04/2007 Bergès C. Danflous S. Campan Hautes-Pyrénées (65) N 42° 59’ 23” W 0° 14’ 57” 1400 Danflous S.
65-2 25/09/2012 Blanc F. Danflous S. Campan Hautes-Pyrénées (65) N 42° 58’ 59” W 0° 10’ 21” 1420 Danflous S.
65-3 12/07/2012 Déjean S. Danflous S. Betpouey Hautes-Pyrénées (65) N 42°52’25” E 0°02’57” 1300 Danflous S.
65-4 04/06/2008 Déjean S. Déjean S. Villelongue Hautes-Pyrénées (65) N 42° 56’ 12” W 0° 02’ 53” 500 Déjean S.
65-5 15/07/2008 Déjean S. Déjean S. Barèges Hautes-Pyrénées (65) N 42° 53’ 34” E 0° 04’ 32” 1500 Déjean S.
65-6 29/07/2009 Déjean S. Déjean S. Cauterets Hautes-Pyrénées (65) N 42° 50’ 3” W 0° 10’ 12” 1720 Déjean S.
65-7 11/07/2008 Déjean S. Déjean S. Gèdre Hautes-Pyrénées (65) N 42° 47’ 17.9” E 0° 03’ 28.8” 1630 Déjean S.
65-8 16/07/2002 D’Amico F. D’Amico F. Cauterets Hautes-Pyrénées (65) N 42°52’15,0” W 0°06’24,8” 1130 D’Amico F.
65-9 14/08/2000 D’Amico F. D’Amico F. Loudenvielle Hautes-Pyrénées (65) N 42°44’51,0” E 0°24’41.5” 1560 D’Amico F.
65-10 13/07/2001 D’Amico F. D’Amico F. Loudenvielle Hautes-Pyrénées (65) N 42°44’11.5” E 0°24’45.1” 1560 D’Amico F.
65-11 09/05/2003 D’Amico F. D’Amico F. Luz Hautes-Pyrénées (65) N 42°54’50.2” W 0°02’12.5” 640 D’Amico F.
31-1 15/07/2008 Valladarès L. Danflous S. Marignac Haute-Garonne (31) N 42° 52’ 34” E 0° 40’ 54” NA Danflous S.
31-2 16/05/2010 Danflous S. Danflous S. Herran Haute-Garonne (31) N 42° 58’ 39” E 0° 52’ 59” 900 Danflous S.
31-3 18/06/2012 Déjean S. Déjean S. Bagnères-de-Luchon Haute-Garonne (31) N 42° 43’ 15” E 0° 38’ 11” NA Déjean S.
31-4 14/08/2000 D’Amico F. D’Amico F. Bagnères-de-Luchon Haute-Garonne (31) N 42°43’02,6” E 0°39’02,8” 1450 D’Amico F.
31-5 15/07/2001 D’Amico F. D’Amico F. Bagnères-de-Luchon Haute-Garonne (31) N 42°44’51,0” E 0°29’30,3” 1560 D’Amico F.
09-1 22/06/2011 D’Amico, F. D’Amico, F. Belesta Ariège (09) N 42°52’30.0” E 1°57’56.6” 850 D’Amico, F.
09-2 09/06/2010 Danflous S. Danflous S. Port Ariège (09) N 42° 48’ 15” E 1° 21’ 53” 1600 Danflous S.
09-3 20/06/2009 Danflous S. Danflous S. Port Ariège (09) N 42° 48’ 15” E 1° 21’ 53” 1600 Danflous S.
09-4 21/01/2012 Déjean S. Déjean S. Alzen Ariège (09) N 42° 59’ 9” E 1° 25’ 11” 540 Déjean S.
09-5 10/07/2013 Déjean S. Danflous S. Perles-et-Castelet Ariège (09) N 42° 43’00.2” E 1° 48’19.3” 1380 Danflous S.
09-7 20/05/2014 Déjean S. Déjean S. Mérens-les-Vals Ariège (09) N 42°39’46.09” E 1°50’15.12” 1427 Déjean S.
09-9 27/06/2014 Gouix N. & Déjean S. Déjean S. Ax-les-Thermes Ariège (09) N 42°40’14.98” E 1°49’10.11” 1425 Déjean S.
09-10 02/07/2014 Déjean S. & Blanc F. Danflous S. Luzenac Ariège (09) N 42°45’9.93” E 1°45’54.92” 1174 Danflous S.
09-11 19/07/2014 Danflous S. & Cally S. Danflous S. Orlu Ariège (09) N 42°42’8.52” E 1°53’7.22” 1170 Danflous S.
66-0 23/05/2004 Evenou Y. Evenou Y. Nyer Pyrénées-Orientales (66) UTM WGS84: “31T 0441330 4707468” NA Evenou Y.



Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.


Contacte con la revista fm@ipe.csic.es ypueyo@ipe.csic.es

Soporte técnico soporte.tecnico.revistas@csic.es